Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's examine each of the given matrices to determine if any are equal to the original matrix [tex]\(\left[\begin{array}{ccc}-6 & -6.5 & 1.7 \\ 2 & -8.5 & 19.3\end{array}\right]\)[/tex].
1. Matrix A:
[tex]\[ \left[\begin{array}{cc} 6 & 2 \\ 6.5 & 8.5 \\ 1.7 & 19.3 \end{array}\right] \][/tex]
This matrix is a [tex]\(3 \times 2\)[/tex] matrix, whereas the original matrix is a [tex]\(2 \times 3\)[/tex] matrix. Therefore, Matrix A cannot be equal to the original matrix.
2. Matrix B:
[tex]\[ \left[\begin{array}{cc} -6 & 2 \\ -6.5 & -8.5 \\ 1.7 & 19.3 \end{array}\right] \][/tex]
This matrix is also a [tex]\(3 \times 2\)[/tex] matrix, which is not the same structure as the original [tex]\(2 \times 3\)[/tex] matrix. Hence, Matrix B cannot be equal to the original matrix.
3. Matrix C:
[tex]\[ \left[\begin{array}{ccc} 6 & 6.5 & -1.7 \\ -2 & 8.5 & -19.3 \end{array}\right] \][/tex]
This matrix is a [tex]\(2 \times 3\)[/tex] matrix like the original one, but the elements in the corresponding positions do not match those in the original matrix. Therefore, Matrix C cannot be equal to the original matrix.
4. Matrix D:
[tex]\[ \left[\begin{array}{ccc} -6 & -6.5 & 1.7 \end{array}\right] \][/tex]
This matrix is a [tex]\(1 \times 3\)[/tex] matrix, which also does not match the [tex]\(2 \times 3\)[/tex] structure of the original matrix. Matrix D cannot be equal to the original matrix.
Upon careful examination, none of the provided matrices are equal to the original matrix [tex]\(\left[\begin{array}{ccc}-6 & -6.5 & 1.7 \\ 2 & -8.5 & 19.3\end{array}\right]\)[/tex].
Therefore, the answer to the question is:
None of the matrices are equal to the original matrix.
1. Matrix A:
[tex]\[ \left[\begin{array}{cc} 6 & 2 \\ 6.5 & 8.5 \\ 1.7 & 19.3 \end{array}\right] \][/tex]
This matrix is a [tex]\(3 \times 2\)[/tex] matrix, whereas the original matrix is a [tex]\(2 \times 3\)[/tex] matrix. Therefore, Matrix A cannot be equal to the original matrix.
2. Matrix B:
[tex]\[ \left[\begin{array}{cc} -6 & 2 \\ -6.5 & -8.5 \\ 1.7 & 19.3 \end{array}\right] \][/tex]
This matrix is also a [tex]\(3 \times 2\)[/tex] matrix, which is not the same structure as the original [tex]\(2 \times 3\)[/tex] matrix. Hence, Matrix B cannot be equal to the original matrix.
3. Matrix C:
[tex]\[ \left[\begin{array}{ccc} 6 & 6.5 & -1.7 \\ -2 & 8.5 & -19.3 \end{array}\right] \][/tex]
This matrix is a [tex]\(2 \times 3\)[/tex] matrix like the original one, but the elements in the corresponding positions do not match those in the original matrix. Therefore, Matrix C cannot be equal to the original matrix.
4. Matrix D:
[tex]\[ \left[\begin{array}{ccc} -6 & -6.5 & 1.7 \end{array}\right] \][/tex]
This matrix is a [tex]\(1 \times 3\)[/tex] matrix, which also does not match the [tex]\(2 \times 3\)[/tex] structure of the original matrix. Matrix D cannot be equal to the original matrix.
Upon careful examination, none of the provided matrices are equal to the original matrix [tex]\(\left[\begin{array}{ccc}-6 & -6.5 & 1.7 \\ 2 & -8.5 & 19.3\end{array}\right]\)[/tex].
Therefore, the answer to the question is:
None of the matrices are equal to the original matrix.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.