Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine if the equation [tex]\( y = 5x - \square \)[/tex] represents a direct variation, we need to analyze the equation and compare it to the standard form of a direct variation equation.
A direct variation equation has the form:
[tex]\[ y = kx \][/tex]
where [tex]\( k \)[/tex] is a constant.
1. Original Equation:
[tex]\[ y = 5x - \square \][/tex]
2. Condition for Direct Variation:
For the equation to represent a direct variation, the term containing [tex]\(\square\)[/tex] must not alter the direct proportionality between [tex]\( y \)[/tex] and [tex]\( x \)[/tex]. This means the constant term must be zero to match the form [tex]\( y = kx \)[/tex].
3. Substitute 0 in the Box:
If Lydia puts 0 in the box, the equation becomes:
[tex]\[ y = 5x - 0 \][/tex]
which simplifies to:
[tex]\[ y = 5x \][/tex]
4. Analysis of the Modified Equation:
The modified equation [tex]\( y = 5x \)[/tex] is indeed of the form [tex]\( y = kx \)[/tex], where [tex]\( k = 5 \)[/tex]. Therefore, this represents a direct variation.
By comparing the modified equation to the standard form of a direct variation equation, we can conclude:
- If she puts 0 in the box, she would have a direct variation.
Thus, among the provided explanations, "If she puts 0 in the box she would have a direct variation" is the correct explanation.
A direct variation equation has the form:
[tex]\[ y = kx \][/tex]
where [tex]\( k \)[/tex] is a constant.
1. Original Equation:
[tex]\[ y = 5x - \square \][/tex]
2. Condition for Direct Variation:
For the equation to represent a direct variation, the term containing [tex]\(\square\)[/tex] must not alter the direct proportionality between [tex]\( y \)[/tex] and [tex]\( x \)[/tex]. This means the constant term must be zero to match the form [tex]\( y = kx \)[/tex].
3. Substitute 0 in the Box:
If Lydia puts 0 in the box, the equation becomes:
[tex]\[ y = 5x - 0 \][/tex]
which simplifies to:
[tex]\[ y = 5x \][/tex]
4. Analysis of the Modified Equation:
The modified equation [tex]\( y = 5x \)[/tex] is indeed of the form [tex]\( y = kx \)[/tex], where [tex]\( k = 5 \)[/tex]. Therefore, this represents a direct variation.
By comparing the modified equation to the standard form of a direct variation equation, we can conclude:
- If she puts 0 in the box, she would have a direct variation.
Thus, among the provided explanations, "If she puts 0 in the box she would have a direct variation" is the correct explanation.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.