Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine which expression is equivalent to [tex]\(\sin \frac{7 \pi}{6}\)[/tex], let's break down the problem step-by-step.
First, we need to understand the value of [tex]\(\sin \frac{7 \pi}{6}\)[/tex].
The angle [tex]\(\frac{7 \pi}{6}\)[/tex] is in the third quadrant of the unit circle. In the third quadrant, the sine function is negative.
The equivalent reference angle for [tex]\(\frac{7 \pi}{6}\)[/tex] is:
[tex]\[ \pi + \frac{\pi}{6} = \frac{7 \pi}{6} \][/tex]
Since [tex]\(\pi\)[/tex] corresponds to 180 degrees, [tex]\(\frac{7 \pi}{6} = 180^\circ + 30^\circ = 210^\circ\)[/tex].
The sine of 210 degrees (or [tex]\(\frac{7 \pi}{6}\)[/tex]) is:
[tex]\[ \sin(210^\circ) = -\sin(30^\circ) \][/tex]
Since [tex]\(\sin(30^\circ) = \sin \frac{\pi}{6} = 0.5\)[/tex], we get:
[tex]\[ \sin \frac{7 \pi}{6} = -0.5 \][/tex]
Now, let's evaluate each given option for a match:
- [tex]\(\sin \frac{\pi}{6} = 0.5\)[/tex]
- [tex]\(\sin \frac{5 \pi}{6} = 0.5\)[/tex], since [tex]\(\frac{5 \pi}{6}\)[/tex] is in the second quadrant where sine is positive.
- [tex]\(\sin \frac{5 \pi}{3} = -\sin(\frac{2 \pi}{3}) = -\sin(60^\circ) = -\frac{\sqrt{3}}{2}\)[/tex], which is approximately -0.866.
- [tex]\(\sin \frac{11 \pi}{6} = -\sin(\frac{\pi}{6}) = -0.5\)[/tex], since [tex]\(\frac{11 \pi}{6}\)[/tex] is in the fourth quadrant where sine is negative.
Comparing these values with [tex]\(\sin \frac{7 \pi}{6} = -0.5\)[/tex]:
- [tex]\(\sin \frac{\pi}{6} \neq \sin \frac{7 \pi}{6}\)[/tex]
- [tex]\(\sin \frac{5 \pi}{6} \neq \sin \frac{7 \pi}{6}\)[/tex]
- [tex]\(\sin \frac{5 \pi}{3} \neq \sin \frac{7 \pi}{6}\)[/tex]
- [tex]\(\sin \frac{11 \pi}{6} = \sin \frac{7 \pi}{6}\)[/tex]
Thus, the equivalent expression to [tex]\(\sin \frac{7 \pi}{6}\)[/tex] is [tex]\(\sin \frac{11 \pi}{6}\)[/tex].
So, the correct answer is:
[tex]\[ \boxed{\sin \frac{11 \pi}{6}} \][/tex]
First, we need to understand the value of [tex]\(\sin \frac{7 \pi}{6}\)[/tex].
The angle [tex]\(\frac{7 \pi}{6}\)[/tex] is in the third quadrant of the unit circle. In the third quadrant, the sine function is negative.
The equivalent reference angle for [tex]\(\frac{7 \pi}{6}\)[/tex] is:
[tex]\[ \pi + \frac{\pi}{6} = \frac{7 \pi}{6} \][/tex]
Since [tex]\(\pi\)[/tex] corresponds to 180 degrees, [tex]\(\frac{7 \pi}{6} = 180^\circ + 30^\circ = 210^\circ\)[/tex].
The sine of 210 degrees (or [tex]\(\frac{7 \pi}{6}\)[/tex]) is:
[tex]\[ \sin(210^\circ) = -\sin(30^\circ) \][/tex]
Since [tex]\(\sin(30^\circ) = \sin \frac{\pi}{6} = 0.5\)[/tex], we get:
[tex]\[ \sin \frac{7 \pi}{6} = -0.5 \][/tex]
Now, let's evaluate each given option for a match:
- [tex]\(\sin \frac{\pi}{6} = 0.5\)[/tex]
- [tex]\(\sin \frac{5 \pi}{6} = 0.5\)[/tex], since [tex]\(\frac{5 \pi}{6}\)[/tex] is in the second quadrant where sine is positive.
- [tex]\(\sin \frac{5 \pi}{3} = -\sin(\frac{2 \pi}{3}) = -\sin(60^\circ) = -\frac{\sqrt{3}}{2}\)[/tex], which is approximately -0.866.
- [tex]\(\sin \frac{11 \pi}{6} = -\sin(\frac{\pi}{6}) = -0.5\)[/tex], since [tex]\(\frac{11 \pi}{6}\)[/tex] is in the fourth quadrant where sine is negative.
Comparing these values with [tex]\(\sin \frac{7 \pi}{6} = -0.5\)[/tex]:
- [tex]\(\sin \frac{\pi}{6} \neq \sin \frac{7 \pi}{6}\)[/tex]
- [tex]\(\sin \frac{5 \pi}{6} \neq \sin \frac{7 \pi}{6}\)[/tex]
- [tex]\(\sin \frac{5 \pi}{3} \neq \sin \frac{7 \pi}{6}\)[/tex]
- [tex]\(\sin \frac{11 \pi}{6} = \sin \frac{7 \pi}{6}\)[/tex]
Thus, the equivalent expression to [tex]\(\sin \frac{7 \pi}{6}\)[/tex] is [tex]\(\sin \frac{11 \pi}{6}\)[/tex].
So, the correct answer is:
[tex]\[ \boxed{\sin \frac{11 \pi}{6}} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.