Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
In the given problem, we need to determine which of the ordered pairs could appear in the table if the relationship between days and books collected is linear. Let's analyze the linear relationship based on the points provided in the table: (1, 18), (3, 28), and (5, 38).
First, we'll calculate the slope ([tex]\( m \)[/tex]) of the linear relationship. The formula for the slope between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Using the points (1, 18) and (3, 28):
[tex]\[ m = \frac{28 - 18}{3 - 1} = \frac{10}{2} = 5 \][/tex]
So the slope ([tex]\( m \)[/tex]) is 5.
Next, we find the y-intercept ([tex]\( b \)[/tex]) using the equation of the line [tex]\( y = mx + b \)[/tex]. We can use one of the given points (let's use (1, 18)) to solve for [tex]\( b \)[/tex]:
[tex]\[ 18 = 5 \cdot 1 + b \][/tex]
[tex]\[ 18 = 5 + b \][/tex]
[tex]\[ b = 18 - 5 = 13 \][/tex]
So, the equation of the line is:
[tex]\[ y = 5x + 13 \][/tex]
Now, we'll check each pair to see if they satisfy this equation:
1. For [tex]\((0, 8)\)[/tex]:
[tex]\[ y = 5 \cdot 0 + 13 = 13 \][/tex]
This does not match [tex]\( y = 8 \)[/tex], so [tex]\((0, 8)\)[/tex] does not appear in the table.
2. For [tex]\( (2, 23) \)[/tex]:
[tex]\[ y = 5 \cdot 2 + 13 = 10 + 13 = 23 \][/tex]
This matches [tex]\( y = 23 \)[/tex], so [tex]\( (2, 23) \)[/tex] could appear in the table.
3. For [tex]\( (4, 32) \)[/tex]:
[tex]\[ y = 5 \cdot 4 + 13 = 20 + 13 = 33 \][/tex]
This does not match [tex]\( y = 32 \)[/tex], so [tex]\( (4, 32) \)[/tex] does not appear in the table.
4. For [tex]\( (6, 48) \)[/tex]:
[tex]\[ y = 5 \cdot 6 + 13 = 30 + 13 = 43 \][/tex]
This does not match [tex]\( y = 48 \)[/tex], so [tex]\( (6, 48) \)[/tex] does not appear in the table.
5. For [tex]\( (7, 48) \)[/tex]:
[tex]\[ y = 5 \cdot 7 + 13 = 35 + 13 = 48 \][/tex]
This matches [tex]\( y = 48 \)[/tex], so [tex]\( (7, 48) \)[/tex] could appear in the table.
Based on our analysis, the ordered pairs that could appear in the table are:
[tex]\[ (2, 23) \][/tex]
[tex]\[ (7, 48) \][/tex]
First, we'll calculate the slope ([tex]\( m \)[/tex]) of the linear relationship. The formula for the slope between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Using the points (1, 18) and (3, 28):
[tex]\[ m = \frac{28 - 18}{3 - 1} = \frac{10}{2} = 5 \][/tex]
So the slope ([tex]\( m \)[/tex]) is 5.
Next, we find the y-intercept ([tex]\( b \)[/tex]) using the equation of the line [tex]\( y = mx + b \)[/tex]. We can use one of the given points (let's use (1, 18)) to solve for [tex]\( b \)[/tex]:
[tex]\[ 18 = 5 \cdot 1 + b \][/tex]
[tex]\[ 18 = 5 + b \][/tex]
[tex]\[ b = 18 - 5 = 13 \][/tex]
So, the equation of the line is:
[tex]\[ y = 5x + 13 \][/tex]
Now, we'll check each pair to see if they satisfy this equation:
1. For [tex]\((0, 8)\)[/tex]:
[tex]\[ y = 5 \cdot 0 + 13 = 13 \][/tex]
This does not match [tex]\( y = 8 \)[/tex], so [tex]\((0, 8)\)[/tex] does not appear in the table.
2. For [tex]\( (2, 23) \)[/tex]:
[tex]\[ y = 5 \cdot 2 + 13 = 10 + 13 = 23 \][/tex]
This matches [tex]\( y = 23 \)[/tex], so [tex]\( (2, 23) \)[/tex] could appear in the table.
3. For [tex]\( (4, 32) \)[/tex]:
[tex]\[ y = 5 \cdot 4 + 13 = 20 + 13 = 33 \][/tex]
This does not match [tex]\( y = 32 \)[/tex], so [tex]\( (4, 32) \)[/tex] does not appear in the table.
4. For [tex]\( (6, 48) \)[/tex]:
[tex]\[ y = 5 \cdot 6 + 13 = 30 + 13 = 43 \][/tex]
This does not match [tex]\( y = 48 \)[/tex], so [tex]\( (6, 48) \)[/tex] does not appear in the table.
5. For [tex]\( (7, 48) \)[/tex]:
[tex]\[ y = 5 \cdot 7 + 13 = 35 + 13 = 48 \][/tex]
This matches [tex]\( y = 48 \)[/tex], so [tex]\( (7, 48) \)[/tex] could appear in the table.
Based on our analysis, the ordered pairs that could appear in the table are:
[tex]\[ (2, 23) \][/tex]
[tex]\[ (7, 48) \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.