Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve the equation [tex]\(-x - 3 = x^2 - 2x - 15\)[/tex] by using the graph of the system:
[tex]\[ \begin{array}{l} y = -x - 3 \\ y = x^2 - 2x - 15 \end{array} \][/tex]
you need to find the points where the two graphs intersect. Here’s a step-by-step process to understand and find the solutions:
1. Graph the Linear Equation:
- The equation [tex]\(y = -x - 3\)[/tex] is a linear equation.
- The slope of this line is [tex]\(-1\)[/tex] and the y-intercept is [tex]\(-3\)[/tex]. This means the line crosses the y-axis at [tex]\(-3\)[/tex] and goes downwards with a slope of [tex]\(-1\)[/tex].
2. Graph the Quadratic Equation:
- The equation [tex]\(y = x^2 - 2x - 15\)[/tex] is a quadratic equation, which forms a parabola.
- The parabola opens upwards because the coefficient of [tex]\(x^2\)[/tex] is positive.
- To better graph this, you would typically find the vertex and the x-intercepts (roots) of the parabola. However, for the intersection points, we can focus on the points where it meets the linear graph.
3. Find Intersection Points:
- To find the exact points where these graphs intersect, we set the equations equal to each other: [tex]\(-x - 3 = x^2 - 2x - 15\)[/tex].
- This results in the equation: [tex]\(x^2 - x - 12 = 0\)[/tex].
4. Solve the Quadratic Equation:
- The quadratic equation [tex]\(x^2 - x - 12 = 0\)[/tex] can be factored as:
[tex]\[ (x - 4)(x + 3) = 0 \][/tex]
- This gives the solutions:
[tex]\[ x - 4 = 0 \quad \text{or} \quad x + 3 = 0 \][/tex]
[tex]\[ x = 4 \quad \text{or} \quad x = -3 \][/tex]
5. Confirm the Points:
- Substitute these [tex]\(x\)[/tex]-values back into either of the original equations to confirm the intersection points.
- For [tex]\(x = 4\)[/tex]:
[tex]\[ y = -4 - 3 = -7 \][/tex]
- For [tex]\(x = -3\)[/tex]:
[tex]\[ y = 3 - 3 = 0 \][/tex]
Hence, the intersection points of the graphs are [tex]\((-3, 0)\)[/tex] and [tex]\((4, -7)\)[/tex]. Thus, the solutions to the equation [tex]\(-x - 3 = x^2 - 2x - 15\)[/tex] are:
[tex]\[ x = -3 \quad \text{and} \quad x = 4. \][/tex]
Therefore, the solutions identified from the graph are:
- [tex]\(-3\)[/tex]
- [tex]\(4\)[/tex]
[tex]\[ \begin{array}{l} y = -x - 3 \\ y = x^2 - 2x - 15 \end{array} \][/tex]
you need to find the points where the two graphs intersect. Here’s a step-by-step process to understand and find the solutions:
1. Graph the Linear Equation:
- The equation [tex]\(y = -x - 3\)[/tex] is a linear equation.
- The slope of this line is [tex]\(-1\)[/tex] and the y-intercept is [tex]\(-3\)[/tex]. This means the line crosses the y-axis at [tex]\(-3\)[/tex] and goes downwards with a slope of [tex]\(-1\)[/tex].
2. Graph the Quadratic Equation:
- The equation [tex]\(y = x^2 - 2x - 15\)[/tex] is a quadratic equation, which forms a parabola.
- The parabola opens upwards because the coefficient of [tex]\(x^2\)[/tex] is positive.
- To better graph this, you would typically find the vertex and the x-intercepts (roots) of the parabola. However, for the intersection points, we can focus on the points where it meets the linear graph.
3. Find Intersection Points:
- To find the exact points where these graphs intersect, we set the equations equal to each other: [tex]\(-x - 3 = x^2 - 2x - 15\)[/tex].
- This results in the equation: [tex]\(x^2 - x - 12 = 0\)[/tex].
4. Solve the Quadratic Equation:
- The quadratic equation [tex]\(x^2 - x - 12 = 0\)[/tex] can be factored as:
[tex]\[ (x - 4)(x + 3) = 0 \][/tex]
- This gives the solutions:
[tex]\[ x - 4 = 0 \quad \text{or} \quad x + 3 = 0 \][/tex]
[tex]\[ x = 4 \quad \text{or} \quad x = -3 \][/tex]
5. Confirm the Points:
- Substitute these [tex]\(x\)[/tex]-values back into either of the original equations to confirm the intersection points.
- For [tex]\(x = 4\)[/tex]:
[tex]\[ y = -4 - 3 = -7 \][/tex]
- For [tex]\(x = -3\)[/tex]:
[tex]\[ y = 3 - 3 = 0 \][/tex]
Hence, the intersection points of the graphs are [tex]\((-3, 0)\)[/tex] and [tex]\((4, -7)\)[/tex]. Thus, the solutions to the equation [tex]\(-x - 3 = x^2 - 2x - 15\)[/tex] are:
[tex]\[ x = -3 \quad \text{and} \quad x = 4. \][/tex]
Therefore, the solutions identified from the graph are:
- [tex]\(-3\)[/tex]
- [tex]\(4\)[/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.