Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Of course! Let's solve the system of equations step-by-step.
We have the following system:
[tex]\[ \begin{cases} 2x + 2y = -2 \\ x + y = -1 \end{cases} \][/tex]
### Step 1: Simplify the equations if possible
First, let's simplify the first equation by dividing every term by 2:
[tex]\[ 2x + 2y = -2 \implies x + y = -1 \][/tex]
So, our system of equations is now:
[tex]\[ \begin{cases} x + y = -1 \\ x + y = -1 \end{cases} \][/tex]
### Step 2: Analyze the system
Observing both equations, we see that they are identical, meaning they represent the same line. This means that every solution of the first equation is also a solution of the second and vice versa. Hence, we essentially only have one independent equation.
### Step 3: Solve for one variable in terms of the other
Let's solve for [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex]:
[tex]\[ x + y = -1 \implies y = -1 - x \][/tex]
### Step 4: Choose any value for [tex]\( x \)[/tex] and find the corresponding [tex]\( y \)[/tex]
Because every point on the line [tex]\( x + y = -1 \)[/tex] is a solution, we can choose any real number for [tex]\( x \)[/tex]. For instance, let's choose [tex]\( x = 0 \)[/tex]:
[tex]\[ y = -1 - 0 = -1 \][/tex]
So one solution is [tex]\((0, -1)\)[/tex].
Alternatively, we could choose [tex]\( x = 1 \)[/tex]:
[tex]\[ y = -1 - 1 = -2 \][/tex]
So another solution is [tex]\((1, -2)\)[/tex].
### General Solution
From the given system, since one equation is simply a multiple of the other, the solutions can be expressed as:
[tex]\[ (x, y) = (a, -1 - a) \][/tex]
where [tex]\( a \)[/tex] is any real number.
### Conclusion
The system of equations has infinitely many solutions, and the solutions lie on the line [tex]\( x + y = -1 \)[/tex]. Any point [tex]\((a, -1 - a)\)[/tex] where [tex]\( a \)[/tex] is a real number is a solution to the given system.
We have the following system:
[tex]\[ \begin{cases} 2x + 2y = -2 \\ x + y = -1 \end{cases} \][/tex]
### Step 1: Simplify the equations if possible
First, let's simplify the first equation by dividing every term by 2:
[tex]\[ 2x + 2y = -2 \implies x + y = -1 \][/tex]
So, our system of equations is now:
[tex]\[ \begin{cases} x + y = -1 \\ x + y = -1 \end{cases} \][/tex]
### Step 2: Analyze the system
Observing both equations, we see that they are identical, meaning they represent the same line. This means that every solution of the first equation is also a solution of the second and vice versa. Hence, we essentially only have one independent equation.
### Step 3: Solve for one variable in terms of the other
Let's solve for [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex]:
[tex]\[ x + y = -1 \implies y = -1 - x \][/tex]
### Step 4: Choose any value for [tex]\( x \)[/tex] and find the corresponding [tex]\( y \)[/tex]
Because every point on the line [tex]\( x + y = -1 \)[/tex] is a solution, we can choose any real number for [tex]\( x \)[/tex]. For instance, let's choose [tex]\( x = 0 \)[/tex]:
[tex]\[ y = -1 - 0 = -1 \][/tex]
So one solution is [tex]\((0, -1)\)[/tex].
Alternatively, we could choose [tex]\( x = 1 \)[/tex]:
[tex]\[ y = -1 - 1 = -2 \][/tex]
So another solution is [tex]\((1, -2)\)[/tex].
### General Solution
From the given system, since one equation is simply a multiple of the other, the solutions can be expressed as:
[tex]\[ (x, y) = (a, -1 - a) \][/tex]
where [tex]\( a \)[/tex] is any real number.
### Conclusion
The system of equations has infinitely many solutions, and the solutions lie on the line [tex]\( x + y = -1 \)[/tex]. Any point [tex]\((a, -1 - a)\)[/tex] where [tex]\( a \)[/tex] is a real number is a solution to the given system.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.