Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Find the linear approximation [tex]L(x)[/tex] of the function [tex]g(x)=\sqrt[5]{1+x}[/tex] at [tex]a=0[/tex].

[tex]L(x) \approx \square[/tex]

Use it to approximate the numbers [tex]\sqrt[5]{0.95}[/tex] and [tex]\sqrt[5]{1.1}[/tex]. (Round your answers to three decimal places.)

[tex]
\begin{aligned}
\sqrt[5]{0.95} & \approx \square \\
\sqrt[5]{1.1} & \approx \square
\end{aligned}
[/tex]


Sagot :

To find the linear approximation [tex]\( L(x) \)[/tex] of the function [tex]\( g(x) = \sqrt[5]{1 + x} \)[/tex] at [tex]\( a = 0 \)[/tex], we will follow these steps:

1. Determine [tex]\( g(a) \)[/tex]:
Calculate the function value at [tex]\( a = 0 \)[/tex]:
[tex]\[ g(0) = \sqrt[5]{1 + 0} = \sqrt[5]{1} = 1 \][/tex]

2. Compute [tex]\( g'(a) \)[/tex]:
Calculate the derivative of the function [tex]\( g(x) \)[/tex]:
[tex]\[ g(x) = (1 + x)^{\frac{1}{5}} \][/tex]
Using the power rule for differentiation:
[tex]\[ g'(x) = \frac{1}{5}(1 + x)^{\frac{1}{5} - 1} = \frac{1}{5}(1 + x)^{-\frac{4}{5}} \][/tex]
Evaluate the derivative at [tex]\( x = 0 \)[/tex]:
[tex]\[ g'(0) = \frac{1}{5}(1 + 0)^{-\frac{4}{5}} = \frac{1}{5}(1)^{-\frac{4}{5}} = \frac{1}{5} \][/tex]

3. Linear approximation [tex]\( L(x) \)[/tex]:
The linear approximation of [tex]\( g(x) \)[/tex] at [tex]\( a = 0 \)[/tex] is given by:
[tex]\[ L(x) = g(a) + g'(a) \cdot (x - a) \][/tex]
Plugging in [tex]\( a = 0 \)[/tex]:
[tex]\[ L(x) = g(0) + g'(0) \cdot (x - 0) = 1 + \frac{1}{5} x = 1 + 0.2x \][/tex]
Thus, the linear approximation is:
[tex]\[ L(x) \approx 1 + 0.2x \][/tex]

4. Approximate [tex]\( \sqrt[5]{0.95} \)[/tex] using [tex]\( L(x) \)[/tex]:
[tex]\[ \sqrt[5]{0.95} \approx L(0.95 - 1) \][/tex]
Calculate [tex]\( L(-0.05) \)[/tex]:
[tex]\[ L(-0.05) = 1 + 0.2 \cdot (-0.05) = 1 - 0.01 = 0.990 \][/tex]
Therefore,
[tex]\[ \sqrt[5]{0.95} \approx 0.990 \][/tex]

5. Approximate [tex]\( \sqrt[5]{1.1} \)[/tex] using [tex]\( L(x) \)[/tex]:
[tex]\[ \sqrt[5]{1.1} \approx L(1.1 - 1) \][/tex]
Calculate [tex]\( L(0.1) \)[/tex]:
[tex]\[ L(0.1) = 1 + 0.2 \cdot 0.1 = 1 + 0.02 = 1.020 \][/tex]
Therefore,
[tex]\[ \sqrt[5]{1.1} \approx 1.020 \][/tex]

In conclusion:
[tex]\[ \begin{aligned} L(x) &\approx 1 + 0.2x \\ \sqrt[5]{0.95} &\approx 0.990 \\ \sqrt[5]{1.1} &\approx 1.020 \end{aligned} \][/tex]