Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve for the value of [tex]\( r \)[/tex] in the expression [tex]\(\frac{11 \pm \sqrt{r}}{2}\)[/tex] from the quadratic equation [tex]\( x^2 - 11x + 5 \)[/tex], let's follow these steps:
1. Identify the coefficients [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] from the quadratic equation:
[tex]\[ a = 1, \quad b = -11, \quad c = 5 \][/tex]
2. Calculate the discriminant of the quadratic equation:
The discriminant formula for a quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex] is given by:
[tex]\[ \text{Discriminant} = b^2 - 4ac \][/tex]
3. Substitute the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] into the discriminant formula:
[tex]\[ \text{Discriminant} = (-11)^2 - 4 \cdot 1 \cdot 5 \][/tex]
[tex]\[ \text{Discriminant} = 121 - 20 \][/tex]
[tex]\[ \text{Discriminant} = 101 \][/tex]
4. Interpret the discriminant in the context of the original question:
The question states that the solution is expressed as [tex]\(\frac{11 \pm \sqrt{r}}{2}\)[/tex]. This corresponds to the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex].
Since the discriminant [tex]\( b^2 - 4ac \)[/tex] is what is under the square root in the quadratic formula, we equate this to [tex]\( r \)[/tex]. Therefore:
[tex]\[ r = 101 \][/tex]
Therefore, the value of [tex]\( r \)[/tex] is [tex]\( \boxed{101} \)[/tex].
1. Identify the coefficients [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] from the quadratic equation:
[tex]\[ a = 1, \quad b = -11, \quad c = 5 \][/tex]
2. Calculate the discriminant of the quadratic equation:
The discriminant formula for a quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex] is given by:
[tex]\[ \text{Discriminant} = b^2 - 4ac \][/tex]
3. Substitute the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] into the discriminant formula:
[tex]\[ \text{Discriminant} = (-11)^2 - 4 \cdot 1 \cdot 5 \][/tex]
[tex]\[ \text{Discriminant} = 121 - 20 \][/tex]
[tex]\[ \text{Discriminant} = 101 \][/tex]
4. Interpret the discriminant in the context of the original question:
The question states that the solution is expressed as [tex]\(\frac{11 \pm \sqrt{r}}{2}\)[/tex]. This corresponds to the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex].
Since the discriminant [tex]\( b^2 - 4ac \)[/tex] is what is under the square root in the quadratic formula, we equate this to [tex]\( r \)[/tex]. Therefore:
[tex]\[ r = 101 \][/tex]
Therefore, the value of [tex]\( r \)[/tex] is [tex]\( \boxed{101} \)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.