Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine whether the function [tex]\( y = 9^{0.9x} \)[/tex] represents exponential growth or decay, we need to analyze the base of the exponent and the exponent itself.
1. Examine the Base:
- The base of the exponential function here is 9.
- Since 9 is greater than 1 (i.e., 9 > 1), it indicates that the function tends to increase as [tex]\(x\)[/tex] increases, provided the exponent is positive.
2. Examine the Exponent:
- The exponent in the function is [tex]\( 0.9x \)[/tex].
- Notice that [tex]\( 0.9 \)[/tex] is a positive number (i.e., 0.9 > 0).
- For [tex]\( x > 0 \)[/tex], the value of [tex]\( 0.9x \)[/tex] will always be positive as well.
3. Combining Both Observations:
- Since the base (9) is greater than 1 and the exponent ([tex]\( 0.9x \)[/tex]) is positive for [tex]\( x > 0 \)[/tex], the overall function [tex]\( y = 9^{0.9x} \)[/tex] will increase as [tex]\( x \)[/tex] increases.
- This behavior — where the function value increases as [tex]\( x \)[/tex] increases — is characteristic of exponential growth.
Therefore, [tex]\( y = 9^{0.9x} \)[/tex] is an example of an exponential growth function.
So, the correct classification of the function is:
[tex]\[ \boxed{\text{Growth}} \][/tex]
1. Examine the Base:
- The base of the exponential function here is 9.
- Since 9 is greater than 1 (i.e., 9 > 1), it indicates that the function tends to increase as [tex]\(x\)[/tex] increases, provided the exponent is positive.
2. Examine the Exponent:
- The exponent in the function is [tex]\( 0.9x \)[/tex].
- Notice that [tex]\( 0.9 \)[/tex] is a positive number (i.e., 0.9 > 0).
- For [tex]\( x > 0 \)[/tex], the value of [tex]\( 0.9x \)[/tex] will always be positive as well.
3. Combining Both Observations:
- Since the base (9) is greater than 1 and the exponent ([tex]\( 0.9x \)[/tex]) is positive for [tex]\( x > 0 \)[/tex], the overall function [tex]\( y = 9^{0.9x} \)[/tex] will increase as [tex]\( x \)[/tex] increases.
- This behavior — where the function value increases as [tex]\( x \)[/tex] increases — is characteristic of exponential growth.
Therefore, [tex]\( y = 9^{0.9x} \)[/tex] is an example of an exponential growth function.
So, the correct classification of the function is:
[tex]\[ \boxed{\text{Growth}} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.