Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's start by identifying important components from the given information:
1. Focus: The focus of the parabola is [tex]\(\left(-\frac{3}{2}, -\frac{11}{4}\right)\)[/tex].
2. Directrix: The directrix is given as [tex]\( y = -\frac{21}{4} \)[/tex].
### Step 1: Determine the Vertex
The vertex of a parabola that is vertical (i.e., opens upwards or downwards) lies midway between the focus and the directrix. The y-coordinate of the vertex, [tex]\( k \)[/tex], is the average of the y-coordinates of the focus and the directrix.
So, let's calculate the y-coordinate of the vertex:
[tex]\[ k = \frac{-\frac{11}{4} + \left(-\frac{21}{4}\right)}{2} = \frac{-\frac{11}{4} - \frac{21}{4}}{2} = \frac{-\frac{32}{4}}{2} = \frac{-8}{2} = -4 \][/tex]
The x-coordinate of the vertex, [tex]\( h \)[/tex], is the same as that of the focus:
[tex]\[ h = -\frac{3}{2} \][/tex]
Thus, the vertex of the parabola is [tex]\(\left(-\frac{3}{2}, -4 \right)\)[/tex].
### Step 2: Determine the Distance [tex]\( p \)[/tex]
The distance [tex]\( p \)[/tex] from the vertex to the focus (which is also the distance from the vertex to the directrix) is the absolute difference between [tex]\( k \)[/tex] and the y-coordinate of the directrix.
[tex]\[ p = \left| k - \left(-\frac{21}{4}\right) \right| = \left| -4 - \left(-\frac{21}{4}\right) \right| = \left| -4 + \frac{21}{4} \right| = \left| \frac{-16 + 21}{4} \right| = \left| \frac{5}{4} \right| = \frac{5}{4} \][/tex]
### Step 3: Write the Equation in Vertex Form
For a vertically oriented parabola, the vertex form of the equation is given by:
[tex]\[ (x - h)^2 = 4p(y - k) \][/tex]
Substituting the vertex coordinates [tex]\((h, k) = \left(-\frac{3}{2}, -4\right)\)[/tex] and [tex]\( p = \frac{5}{4} \)[/tex]:
[tex]\[ (x - \left(-\frac{3}{2}\right))^2 = 4 \cdot \frac{5}{4} (y - (-4)) \][/tex]
Simplifying this gives us:
[tex]\[ (x + \frac{3}{2})^2 = 5(y + 4) \][/tex]
Thus, the vertex form of the equation for the given parabola is:
[tex]\[ (x + \frac{3}{2})^2 = 5(y + 4) \][/tex]
1. Focus: The focus of the parabola is [tex]\(\left(-\frac{3}{2}, -\frac{11}{4}\right)\)[/tex].
2. Directrix: The directrix is given as [tex]\( y = -\frac{21}{4} \)[/tex].
### Step 1: Determine the Vertex
The vertex of a parabola that is vertical (i.e., opens upwards or downwards) lies midway between the focus and the directrix. The y-coordinate of the vertex, [tex]\( k \)[/tex], is the average of the y-coordinates of the focus and the directrix.
So, let's calculate the y-coordinate of the vertex:
[tex]\[ k = \frac{-\frac{11}{4} + \left(-\frac{21}{4}\right)}{2} = \frac{-\frac{11}{4} - \frac{21}{4}}{2} = \frac{-\frac{32}{4}}{2} = \frac{-8}{2} = -4 \][/tex]
The x-coordinate of the vertex, [tex]\( h \)[/tex], is the same as that of the focus:
[tex]\[ h = -\frac{3}{2} \][/tex]
Thus, the vertex of the parabola is [tex]\(\left(-\frac{3}{2}, -4 \right)\)[/tex].
### Step 2: Determine the Distance [tex]\( p \)[/tex]
The distance [tex]\( p \)[/tex] from the vertex to the focus (which is also the distance from the vertex to the directrix) is the absolute difference between [tex]\( k \)[/tex] and the y-coordinate of the directrix.
[tex]\[ p = \left| k - \left(-\frac{21}{4}\right) \right| = \left| -4 - \left(-\frac{21}{4}\right) \right| = \left| -4 + \frac{21}{4} \right| = \left| \frac{-16 + 21}{4} \right| = \left| \frac{5}{4} \right| = \frac{5}{4} \][/tex]
### Step 3: Write the Equation in Vertex Form
For a vertically oriented parabola, the vertex form of the equation is given by:
[tex]\[ (x - h)^2 = 4p(y - k) \][/tex]
Substituting the vertex coordinates [tex]\((h, k) = \left(-\frac{3}{2}, -4\right)\)[/tex] and [tex]\( p = \frac{5}{4} \)[/tex]:
[tex]\[ (x - \left(-\frac{3}{2}\right))^2 = 4 \cdot \frac{5}{4} (y - (-4)) \][/tex]
Simplifying this gives us:
[tex]\[ (x + \frac{3}{2})^2 = 5(y + 4) \][/tex]
Thus, the vertex form of the equation for the given parabola is:
[tex]\[ (x + \frac{3}{2})^2 = 5(y + 4) \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.