Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine the probability that both you and your friend are chosen as contestants out of the 6 people, while knowing that the host will choose 3 people in total, let's break down the problem step by step:
1. Total Number of Ways to Choose 3 Out of 6 People:
The total number of ways to choose 3 people from 6 is given by the combination formula [tex]\({}_6C_3\)[/tex]:
[tex]\[ {}_6C_3 = \frac{6!}{3!(6-3)!} = \frac{6!}{3! \cdot 3!} = 20 \][/tex]
2. Number of Favorable Outcomes:
We need to find the number of ways to choose 3 people such that both you and your friend are included among the chosen ones.
- Since you and your friend must be chosen, we are left with choosing 1 more person out of the remaining 4 people.
- The number of ways to choose 1 person out of 4 is given by the combination formula [tex]\({}_4C_1\)[/tex]:
[tex]\[ {}_4C_1 = \frac{4!}{1!(4-1)!} = \frac{4!}{1! \cdot 3!} = 4 \][/tex]
3. Probability Calculation:
The probability is the ratio of the number of favorable outcomes to the total number of outcomes.
[tex]\[ \text{Probability} = \frac{\text{Number of favorable outcomes}}{\text{Total number of outcomes}} = \frac{{}_4C_1}{{}_6C_3} = \frac{4}{20} \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{\frac{4}{20}} \][/tex]
1. Total Number of Ways to Choose 3 Out of 6 People:
The total number of ways to choose 3 people from 6 is given by the combination formula [tex]\({}_6C_3\)[/tex]:
[tex]\[ {}_6C_3 = \frac{6!}{3!(6-3)!} = \frac{6!}{3! \cdot 3!} = 20 \][/tex]
2. Number of Favorable Outcomes:
We need to find the number of ways to choose 3 people such that both you and your friend are included among the chosen ones.
- Since you and your friend must be chosen, we are left with choosing 1 more person out of the remaining 4 people.
- The number of ways to choose 1 person out of 4 is given by the combination formula [tex]\({}_4C_1\)[/tex]:
[tex]\[ {}_4C_1 = \frac{4!}{1!(4-1)!} = \frac{4!}{1! \cdot 3!} = 4 \][/tex]
3. Probability Calculation:
The probability is the ratio of the number of favorable outcomes to the total number of outcomes.
[tex]\[ \text{Probability} = \frac{\text{Number of favorable outcomes}}{\text{Total number of outcomes}} = \frac{{}_4C_1}{{}_6C_3} = \frac{4}{20} \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{\frac{4}{20}} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.