Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the [tex]\(x\)[/tex]-intercepts of the quadratic function [tex]\(g(x) = -2(x-4)(x+1)\)[/tex], we need to solve for the values of [tex]\(x\)[/tex] that make [tex]\(g(x) = 0\)[/tex].
1. Set the function equal to zero:
[tex]\[ -2(x - 4)(x + 1) = 0 \][/tex]
2. Factor the equation:
[tex]\[ -2(x - 4)(x + 1) = 0 \][/tex]
Since the product of two factors is zero, one or both of the factors must be zero.
3. Set each factor equal to zero and solve for [tex]\(x\)[/tex]:
- For the factor [tex]\((x - 4) = 0\)[/tex]:
[tex]\[ x - 4 = 0 \implies x = 4 \][/tex]
- For the factor [tex]\((x + 1) = 0\)[/tex]:
[tex]\[ x + 1 = 0 \implies x = -1 \][/tex]
4. Determine the [tex]\(x\)[/tex]-intercepts:
The [tex]\(x\)[/tex]-intercepts occur at the points where the function crosses the [tex]\(x\)[/tex]-axis, which are the points [tex]\((4, 0)\)[/tex] and [tex]\((-1, 0)\)[/tex].
5. Select the correct option:
From the given options, the correct answer is:
B. [tex]\((4, 0)\)[/tex] and [tex]\((-1, 0)\)[/tex]
Thus, the [tex]\(x\)[/tex]-intercepts of the quadratic function [tex]\(g(x) = -2(x-4)(x+1)\)[/tex] are [tex]\((4, 0)\)[/tex] and [tex]\((-1, 0)\)[/tex].
1. Set the function equal to zero:
[tex]\[ -2(x - 4)(x + 1) = 0 \][/tex]
2. Factor the equation:
[tex]\[ -2(x - 4)(x + 1) = 0 \][/tex]
Since the product of two factors is zero, one or both of the factors must be zero.
3. Set each factor equal to zero and solve for [tex]\(x\)[/tex]:
- For the factor [tex]\((x - 4) = 0\)[/tex]:
[tex]\[ x - 4 = 0 \implies x = 4 \][/tex]
- For the factor [tex]\((x + 1) = 0\)[/tex]:
[tex]\[ x + 1 = 0 \implies x = -1 \][/tex]
4. Determine the [tex]\(x\)[/tex]-intercepts:
The [tex]\(x\)[/tex]-intercepts occur at the points where the function crosses the [tex]\(x\)[/tex]-axis, which are the points [tex]\((4, 0)\)[/tex] and [tex]\((-1, 0)\)[/tex].
5. Select the correct option:
From the given options, the correct answer is:
B. [tex]\((4, 0)\)[/tex] and [tex]\((-1, 0)\)[/tex]
Thus, the [tex]\(x\)[/tex]-intercepts of the quadratic function [tex]\(g(x) = -2(x-4)(x+1)\)[/tex] are [tex]\((4, 0)\)[/tex] and [tex]\((-1, 0)\)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.