At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Alright, let's go through the geometric probability distribution problem step-by-step.
### (a) Probability [tex]\( P(3) \)[/tex]
Given:
- [tex]\( p = 0.524 \)[/tex] (Shaquille O'Neal's success rate)
- [tex]\( x = 3 \)[/tex] (we want the probability he makes his third attempt after missing two)
The probability [tex]\( P(x) \)[/tex] for a geometric distribution is given by:
[tex]\[ P(x) = p (1 - p)^{x-1} \][/tex]
So, for [tex]\( x = 3 \)[/tex]:
[tex]\[ P(3) = 0.524 \times (1 - 0.524)^{3-1} \][/tex]
From the result obtained:
[tex]\[ P(3) = 0.118725824 \][/tex]
### (b) Probability Distribution for [tex]\( x = 1, 2, \ldots, 10 \)[/tex]
We need to construct a probability distribution for [tex]\( x = 1 \)[/tex] to [tex]\( x = 10 \)[/tex]. The probability distribution [tex]\( P(x) \)[/tex] is:
1. For [tex]\( x = 1 \)[/tex]:
[tex]\[ P(1) = 0.524 \][/tex]
2. For [tex]\( x = 2 \)[/tex]:
[tex]\[ P(2) = 0.524 \times (1 - 0.524)^1 = 0.249424 \][/tex]
3. For [tex]\( x = 3 \)[/tex]:
[tex]\[ P(3) = 0.524 \times (1 - 0.524)^2 = 0.118725824 \][/tex]
4. For [tex]\( x = 4 \)[/tex]:
[tex]\[ P(4) = 0.524 \times (1 - 0.524)^3 = 0.056513492224 \][/tex]
5. For [tex]\( x = 5 \)[/tex]:
[tex]\[ P(5) = 0.524 \times (1 - 0.524)^4 = 0.026900422298624 \][/tex]
6. For [tex]\( x = 6 \)[/tex]:
[tex]\[ P(6) = 0.524 \times (1 - 0.524)^5 = 0.012804601014145 \][/tex]
7. For [tex]\( x = 7 \)[/tex]:
[tex]\[ P(7) = 0.524 \times (1 - 0.524)^6 = 0.006094990082733 \][/tex]
8. For [tex]\( x = 8 \)[/tex]:
[tex]\[ P(8) = 0.524 \times (1 - 0.524)^7 = 0.002901215279381 \][/tex]
9. For [tex]\( x = 9 \)[/tex]:
[tex]\[ P(9) = 0.524 \times (1 - 0.524)^8 = 0.001380978472985 \][/tex]
10. For [tex]\( x = 10 \)[/tex]:
[tex]\[ P(10) = 0.524 \times (1 - 0.524)^9 = 0.000657345753141 \][/tex]
Thus, the probability distribution is:
[tex]\[ [0.524, 0.249424, 0.118725824, 0.056513492224, 0.026900422298624, 0.012804601014145, 0.006094990082733, 0.002901215279381, 0.001380978472985, 0.000657345753141] \][/tex]
### (c) Mean of the Distribution
The mean [tex]\( \mu \)[/tex] of a geometric distribution is given by:
[tex]\[ \mu = \frac{1}{p} \][/tex]
Using [tex]\( p = 0.524 \)[/tex]:
[tex]\[ \mu = \frac{1}{0.524} \][/tex]
From the result obtained:
[tex]\[ \mu = 1.9083969465648853 \][/tex]
### (d) Comparison of the Mean with [tex]\( \frac{1}{p} \)[/tex]
We have already computed the mean as [tex]\( \frac{1}{p} = 1.9083969465648853 \)[/tex].
So, the mean calculated in part (c) [tex]\( \mu = 1.9083969465648853 \)[/tex] is indeed equal to [tex]\( \frac{1}{p} \)[/tex]. This confirms that the mean of a geometric distribution is [tex]\( \frac{1}{p} \)[/tex].
In conclusion, the expected number of free throw attempts Shaquille O'Neal would make before observing a successful free throw is approximately 1.908.
### (a) Probability [tex]\( P(3) \)[/tex]
Given:
- [tex]\( p = 0.524 \)[/tex] (Shaquille O'Neal's success rate)
- [tex]\( x = 3 \)[/tex] (we want the probability he makes his third attempt after missing two)
The probability [tex]\( P(x) \)[/tex] for a geometric distribution is given by:
[tex]\[ P(x) = p (1 - p)^{x-1} \][/tex]
So, for [tex]\( x = 3 \)[/tex]:
[tex]\[ P(3) = 0.524 \times (1 - 0.524)^{3-1} \][/tex]
From the result obtained:
[tex]\[ P(3) = 0.118725824 \][/tex]
### (b) Probability Distribution for [tex]\( x = 1, 2, \ldots, 10 \)[/tex]
We need to construct a probability distribution for [tex]\( x = 1 \)[/tex] to [tex]\( x = 10 \)[/tex]. The probability distribution [tex]\( P(x) \)[/tex] is:
1. For [tex]\( x = 1 \)[/tex]:
[tex]\[ P(1) = 0.524 \][/tex]
2. For [tex]\( x = 2 \)[/tex]:
[tex]\[ P(2) = 0.524 \times (1 - 0.524)^1 = 0.249424 \][/tex]
3. For [tex]\( x = 3 \)[/tex]:
[tex]\[ P(3) = 0.524 \times (1 - 0.524)^2 = 0.118725824 \][/tex]
4. For [tex]\( x = 4 \)[/tex]:
[tex]\[ P(4) = 0.524 \times (1 - 0.524)^3 = 0.056513492224 \][/tex]
5. For [tex]\( x = 5 \)[/tex]:
[tex]\[ P(5) = 0.524 \times (1 - 0.524)^4 = 0.026900422298624 \][/tex]
6. For [tex]\( x = 6 \)[/tex]:
[tex]\[ P(6) = 0.524 \times (1 - 0.524)^5 = 0.012804601014145 \][/tex]
7. For [tex]\( x = 7 \)[/tex]:
[tex]\[ P(7) = 0.524 \times (1 - 0.524)^6 = 0.006094990082733 \][/tex]
8. For [tex]\( x = 8 \)[/tex]:
[tex]\[ P(8) = 0.524 \times (1 - 0.524)^7 = 0.002901215279381 \][/tex]
9. For [tex]\( x = 9 \)[/tex]:
[tex]\[ P(9) = 0.524 \times (1 - 0.524)^8 = 0.001380978472985 \][/tex]
10. For [tex]\( x = 10 \)[/tex]:
[tex]\[ P(10) = 0.524 \times (1 - 0.524)^9 = 0.000657345753141 \][/tex]
Thus, the probability distribution is:
[tex]\[ [0.524, 0.249424, 0.118725824, 0.056513492224, 0.026900422298624, 0.012804601014145, 0.006094990082733, 0.002901215279381, 0.001380978472985, 0.000657345753141] \][/tex]
### (c) Mean of the Distribution
The mean [tex]\( \mu \)[/tex] of a geometric distribution is given by:
[tex]\[ \mu = \frac{1}{p} \][/tex]
Using [tex]\( p = 0.524 \)[/tex]:
[tex]\[ \mu = \frac{1}{0.524} \][/tex]
From the result obtained:
[tex]\[ \mu = 1.9083969465648853 \][/tex]
### (d) Comparison of the Mean with [tex]\( \frac{1}{p} \)[/tex]
We have already computed the mean as [tex]\( \frac{1}{p} = 1.9083969465648853 \)[/tex].
So, the mean calculated in part (c) [tex]\( \mu = 1.9083969465648853 \)[/tex] is indeed equal to [tex]\( \frac{1}{p} \)[/tex]. This confirms that the mean of a geometric distribution is [tex]\( \frac{1}{p} \)[/tex].
In conclusion, the expected number of free throw attempts Shaquille O'Neal would make before observing a successful free throw is approximately 1.908.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.