Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Sure, let's find the mean of the given data step by step.
### Step 1: Identify the class intervals and their frequencies
Given the data:
- Class intervals: [tex]\(0-10\)[/tex], [tex]\(10-20\)[/tex], [tex]\(20-30\)[/tex], [tex]\(30-40\)[/tex], [tex]\(40-50\)[/tex]
- Frequencies: 9, 12, 15, 10, 14
### Step 2: Calculate the midpoint of each class interval
The midpoint (or class mark) of a class interval is calculated using the formula:
[tex]\[ \text{Midpoint} = \frac{\text{Lower limit} + \text{Upper limit}}{2} \][/tex]
- For [tex]\(0-10\)[/tex]: Midpoint = [tex]\(\frac{0 + 10}{2} = 5.0\)[/tex]
- For [tex]\(10-20\)[/tex]: Midpoint = [tex]\(\frac{10 + 20}{2} = 15.0\)[/tex]
- For [tex]\(20-30\)[/tex]: Midpoint = [tex]\(\frac{20 + 30}{2} = 25.0\)[/tex]
- For [tex]\(30-40\)[/tex]: Midpoint = [tex]\(\frac{30 + 40}{2} = 35.0\)[/tex]
- For [tex]\(40-50\)[/tex]: Midpoint = [tex]\(\frac{40 + 50}{2} = 45.0\)[/tex]
So, the midpoints are 5.0, 15.0, 25.0, 35.0, 45.0.
### Step 3: Calculate the total frequency
The total frequency is the sum of all frequencies:
[tex]\[ \text{Total frequency} = 9 + 12 + 15 + 10 + 14 = 60 \][/tex]
### Step 4: Calculate the weighted sum of midpoints
We calculate the weighted sum of midpoints by multiplying each midpoint by its corresponding frequency and then summing these products:
[tex]\[ \begin{align*} \text{Weighted sum} & = (5.0 \times 9) + (15.0 \times 12) + (25.0 \times 15) + (35.0 \times 10) + (45.0 \times 14) \\ & = 45.0 + 180.0 + 375.0 + 350.0 + 630.0 \\ & = 1580.0 \end{align*} \][/tex]
### Step 5: Calculate the mean
The mean is calculated by dividing the weighted sum of midpoints by the total frequency:
[tex]\[ \text{Mean} = \frac{\text{Weighted sum}}{\text{Total frequency}} = \frac{1580.0}{60} = 26.333333333333332 \][/tex]
### Final Answer
Therefore, the mean of the given data is approximately 26.33.
### Step 1: Identify the class intervals and their frequencies
Given the data:
- Class intervals: [tex]\(0-10\)[/tex], [tex]\(10-20\)[/tex], [tex]\(20-30\)[/tex], [tex]\(30-40\)[/tex], [tex]\(40-50\)[/tex]
- Frequencies: 9, 12, 15, 10, 14
### Step 2: Calculate the midpoint of each class interval
The midpoint (or class mark) of a class interval is calculated using the formula:
[tex]\[ \text{Midpoint} = \frac{\text{Lower limit} + \text{Upper limit}}{2} \][/tex]
- For [tex]\(0-10\)[/tex]: Midpoint = [tex]\(\frac{0 + 10}{2} = 5.0\)[/tex]
- For [tex]\(10-20\)[/tex]: Midpoint = [tex]\(\frac{10 + 20}{2} = 15.0\)[/tex]
- For [tex]\(20-30\)[/tex]: Midpoint = [tex]\(\frac{20 + 30}{2} = 25.0\)[/tex]
- For [tex]\(30-40\)[/tex]: Midpoint = [tex]\(\frac{30 + 40}{2} = 35.0\)[/tex]
- For [tex]\(40-50\)[/tex]: Midpoint = [tex]\(\frac{40 + 50}{2} = 45.0\)[/tex]
So, the midpoints are 5.0, 15.0, 25.0, 35.0, 45.0.
### Step 3: Calculate the total frequency
The total frequency is the sum of all frequencies:
[tex]\[ \text{Total frequency} = 9 + 12 + 15 + 10 + 14 = 60 \][/tex]
### Step 4: Calculate the weighted sum of midpoints
We calculate the weighted sum of midpoints by multiplying each midpoint by its corresponding frequency and then summing these products:
[tex]\[ \begin{align*} \text{Weighted sum} & = (5.0 \times 9) + (15.0 \times 12) + (25.0 \times 15) + (35.0 \times 10) + (45.0 \times 14) \\ & = 45.0 + 180.0 + 375.0 + 350.0 + 630.0 \\ & = 1580.0 \end{align*} \][/tex]
### Step 5: Calculate the mean
The mean is calculated by dividing the weighted sum of midpoints by the total frequency:
[tex]\[ \text{Mean} = \frac{\text{Weighted sum}}{\text{Total frequency}} = \frac{1580.0}{60} = 26.333333333333332 \][/tex]
### Final Answer
Therefore, the mean of the given data is approximately 26.33.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.