Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Alright, let's solve this step-by-step to determine which of the given probabilities is the greatest for a standard normal distribution, where [tex]\( z \)[/tex] follows a normal distribution with mean 0 and standard deviation 1. The probabilities we need to compare are:
[tex]\[ P(-1.5 \leq z \leq -0.5) \][/tex]
[tex]\[ P(-0.5 \leq z \leq 0.5) \][/tex]
[tex]\[ P(0.5 \leq z \leq 1.5) \][/tex]
[tex]\[ P(1.5 \leq z \leq 2.5) \][/tex]
To find these probabilities, we need to calculate the cumulative distribution function (CDF) values at different z-scores and use these to find the areas under the normal curve between the specified limits.
### Step 1: Calculate Individual Probabilities
1. For [tex]\( P(-1.5 \leq z \leq -0.5) \)[/tex]:
[tex]\[ P(-1.5 \leq z \leq -0.5) = \Phi(-0.5) - \Phi(-1.5) \][/tex]
2. For [tex]\( P(-0.5 \leq z \leq 0.5) \)[/tex]:
[tex]\[ P(-0.5 \leq z \leq 0.5) = \Phi(0.5) - \Phi(-0.5) \][/tex]
3. For [tex]\( P(0.5 \leq z \leq 1.5) \)[/tex]:
[tex]\[ P(0.5 \leq z \leq 1.5) = \Phi(1.5) - \Phi(0.5) \][/tex]
4. For [tex]\( P(1.5 \leq z \leq 2.5) \)[/tex]:
[tex]\[ P(1.5 \leq z \leq 2.5) = \Phi(2.5) - \Phi(1.5) \][/tex]
Here, [tex]\(\Phi(z)\)[/tex] denotes the cumulative distribution function for the standard normal distribution evaluated at [tex]\(z\)[/tex].
### Step 2: List the Calculated Probabilities
Based on the calculations performed:
- [tex]\( P(-1.5 \leq z \leq -0.5) = 0.2417303374571288 \)[/tex]
- [tex]\( P(-0.5 \leq z \leq 0.5) = 0.38292492254802624 \)[/tex]
- [tex]\( P(0.5 \leq z \leq 1.5) = 0.2417303374571288 \)[/tex]
- [tex]\( P(1.5 \leq z \leq 2.5) = 0.060597535943081926 \)[/tex]
### Step 3: Compare the Probabilities
Now, we compare the obtained probabilities:
- [tex]\( 0.2417303374571288 \)[/tex] (for [tex]\( P(-1.5 \leq z \leq -0.5) \)[/tex])
- [tex]\( 0.38292492254802624 \)[/tex] (for [tex]\( P(-0.5 \leq z \leq 0.5) \)[/tex])
- [tex]\( 0.2417303374571288 \)[/tex] (for [tex]\( P(0.5 \leq z \leq 1.5) \)[/tex])
- [tex]\( 0.060597535943081926 \)[/tex] (for [tex]\( P(1.5 \leq z \leq 2.5) \)[/tex])
Among these probabilities, the greatest probability is:
[tex]\[ P(-0.5 \leq z \leq 0.5) = 0.38292492254802624 \][/tex]
### Conclusion
Hence, the interval [tex]\( P(-0.5 \leq z \leq 0.5) \)[/tex] has the greatest probability for a standard normal distribution.
[tex]\[ P(-1.5 \leq z \leq -0.5) \][/tex]
[tex]\[ P(-0.5 \leq z \leq 0.5) \][/tex]
[tex]\[ P(0.5 \leq z \leq 1.5) \][/tex]
[tex]\[ P(1.5 \leq z \leq 2.5) \][/tex]
To find these probabilities, we need to calculate the cumulative distribution function (CDF) values at different z-scores and use these to find the areas under the normal curve between the specified limits.
### Step 1: Calculate Individual Probabilities
1. For [tex]\( P(-1.5 \leq z \leq -0.5) \)[/tex]:
[tex]\[ P(-1.5 \leq z \leq -0.5) = \Phi(-0.5) - \Phi(-1.5) \][/tex]
2. For [tex]\( P(-0.5 \leq z \leq 0.5) \)[/tex]:
[tex]\[ P(-0.5 \leq z \leq 0.5) = \Phi(0.5) - \Phi(-0.5) \][/tex]
3. For [tex]\( P(0.5 \leq z \leq 1.5) \)[/tex]:
[tex]\[ P(0.5 \leq z \leq 1.5) = \Phi(1.5) - \Phi(0.5) \][/tex]
4. For [tex]\( P(1.5 \leq z \leq 2.5) \)[/tex]:
[tex]\[ P(1.5 \leq z \leq 2.5) = \Phi(2.5) - \Phi(1.5) \][/tex]
Here, [tex]\(\Phi(z)\)[/tex] denotes the cumulative distribution function for the standard normal distribution evaluated at [tex]\(z\)[/tex].
### Step 2: List the Calculated Probabilities
Based on the calculations performed:
- [tex]\( P(-1.5 \leq z \leq -0.5) = 0.2417303374571288 \)[/tex]
- [tex]\( P(-0.5 \leq z \leq 0.5) = 0.38292492254802624 \)[/tex]
- [tex]\( P(0.5 \leq z \leq 1.5) = 0.2417303374571288 \)[/tex]
- [tex]\( P(1.5 \leq z \leq 2.5) = 0.060597535943081926 \)[/tex]
### Step 3: Compare the Probabilities
Now, we compare the obtained probabilities:
- [tex]\( 0.2417303374571288 \)[/tex] (for [tex]\( P(-1.5 \leq z \leq -0.5) \)[/tex])
- [tex]\( 0.38292492254802624 \)[/tex] (for [tex]\( P(-0.5 \leq z \leq 0.5) \)[/tex])
- [tex]\( 0.2417303374571288 \)[/tex] (for [tex]\( P(0.5 \leq z \leq 1.5) \)[/tex])
- [tex]\( 0.060597535943081926 \)[/tex] (for [tex]\( P(1.5 \leq z \leq 2.5) \)[/tex])
Among these probabilities, the greatest probability is:
[tex]\[ P(-0.5 \leq z \leq 0.5) = 0.38292492254802624 \][/tex]
### Conclusion
Hence, the interval [tex]\( P(-0.5 \leq z \leq 0.5) \)[/tex] has the greatest probability for a standard normal distribution.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.