Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the position function [tex]\( s(t) \)[/tex], given the acceleration function [tex]\( a(t) = -28 \)[/tex], initial velocity [tex]\( v(0) = 23 \)[/tex], and initial position [tex]\( s(0) = 0 \)[/tex], we will proceed through the following steps:
1. Integrate the acceleration function to find the velocity function:
The acceleration function is given as:
[tex]\[ a(t) = -28 \][/tex]
To find the velocity function [tex]\( v(t) \)[/tex], we integrate the acceleration function with respect to time [tex]\( t \)[/tex]:
[tex]\[ v(t) = \int a(t) \, dt = \int -28 \, dt = -28t + C_1 \][/tex]
Here, [tex]\( C_1 \)[/tex] is the constant of integration. To determine [tex]\( C_1 \)[/tex], we use the initial condition for velocity [tex]\( v(0) = 23 \)[/tex]:
[tex]\[ v(0) = -28(0) + C_1 = 23 \implies C_1 = 23 \][/tex]
Therefore, the velocity function is:
[tex]\[ v(t) = -28t + 23 \][/tex]
2. Integrate the velocity function to find the position function:
With the velocity function known, we integrate it to find the position function [tex]\( s(t) \)[/tex]:
[tex]\[ s(t) = \int v(t) \, dt = \int (-28t + 23) \, dt \][/tex]
We will integrate each term separately:
[tex]\[ s(t) = \int -28t \, dt + \int 23 \, dt = -14t^2 + 23t + C_2 \][/tex]
Here, [tex]\( C_2 \)[/tex] is another constant of integration. To determine [tex]\( C_2 \)[/tex], we use the initial condition for position [tex]\( s(0) = 0 \)[/tex]:
[tex]\[ s(0) = -14(0)^2 + 23(0) + C_2 = 0 \implies C_2 = 0 \][/tex]
Therefore, the position function is:
[tex]\[ s(t) = -14t^2 + 23t \][/tex]
Thus, the position function [tex]\( s(t) \)[/tex] is given by:
[tex]\[ s(t) = -14t^2 + 23t \][/tex]
1. Integrate the acceleration function to find the velocity function:
The acceleration function is given as:
[tex]\[ a(t) = -28 \][/tex]
To find the velocity function [tex]\( v(t) \)[/tex], we integrate the acceleration function with respect to time [tex]\( t \)[/tex]:
[tex]\[ v(t) = \int a(t) \, dt = \int -28 \, dt = -28t + C_1 \][/tex]
Here, [tex]\( C_1 \)[/tex] is the constant of integration. To determine [tex]\( C_1 \)[/tex], we use the initial condition for velocity [tex]\( v(0) = 23 \)[/tex]:
[tex]\[ v(0) = -28(0) + C_1 = 23 \implies C_1 = 23 \][/tex]
Therefore, the velocity function is:
[tex]\[ v(t) = -28t + 23 \][/tex]
2. Integrate the velocity function to find the position function:
With the velocity function known, we integrate it to find the position function [tex]\( s(t) \)[/tex]:
[tex]\[ s(t) = \int v(t) \, dt = \int (-28t + 23) \, dt \][/tex]
We will integrate each term separately:
[tex]\[ s(t) = \int -28t \, dt + \int 23 \, dt = -14t^2 + 23t + C_2 \][/tex]
Here, [tex]\( C_2 \)[/tex] is another constant of integration. To determine [tex]\( C_2 \)[/tex], we use the initial condition for position [tex]\( s(0) = 0 \)[/tex]:
[tex]\[ s(0) = -14(0)^2 + 23(0) + C_2 = 0 \implies C_2 = 0 \][/tex]
Therefore, the position function is:
[tex]\[ s(t) = -14t^2 + 23t \][/tex]
Thus, the position function [tex]\( s(t) \)[/tex] is given by:
[tex]\[ s(t) = -14t^2 + 23t \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.