Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

An ice skater rotates about a vertical axis through the center of her body. Find her angular velocity (in rad/s) if the radial acceleration at a point on the body [tex]r = 34.0 \, \text{cm}[/tex] from the axis of rotation is not to exceed 10.0 times gravitational acceleration [tex]g[/tex].

Sagot :

Sure, let's solve the problem step-by-step:

1. Understand the Given Data:
- The radial distance [tex]\( r \)[/tex] from the axis of rotation is given as 34.0 cm.
- This distance needs to be converted to meters for SI units, hence:
[tex]\[ r = 34.0 \, \text{cm} = 0.34 \, \text{m} \][/tex]
- The gravitational acceleration [tex]\( g \)[/tex] is given as 9.8 [tex]\( \text{m/s}^2 \)[/tex].
- The radial acceleration is not to exceed 10.0 times the gravitational acceleration [tex]\( g \)[/tex]:
[tex]\[ \text{Radial acceleration} = 10 \times g = 10 \times 9.8 \, \text{m/s}^2 = 98 \, \text{m/s}^2 \][/tex]

2. Formula for Radial Acceleration:
The radial acceleration in circular motion is given by:
[tex]\[ a_r = \omega^2 \times r \][/tex]
Where:
- [tex]\( a_r \)[/tex] is the radial acceleration.
- [tex]\( \omega \)[/tex] is the angular velocity in radians per second (rad/s).
- [tex]\( r \)[/tex] is the radius in meters.

3. Rearrange the Formula to Solve for [tex]\( \omega \)[/tex]:
Given [tex]\( a_r \)[/tex] and [tex]\( r \)[/tex], we solve for [tex]\( \omega \)[/tex]:
[tex]\[ \omega = \sqrt{\frac{a_r}{r}} \][/tex]

4. Substitute the Known Values:
- [tex]\( a_r = 98 \, \text{m/s}^2 \)[/tex]
- [tex]\( r = 0.34 \, \text{m} \)[/tex]
Thus:
[tex]\[ \omega = \sqrt{\frac{98}{0.34}} \][/tex]

5. Calculate the Angular Velocity [tex]\( \omega \)[/tex]:
[tex]\[ \omega = \sqrt{\frac{98}{0.34}} \approx 16.977 \, \text{rad/s} \][/tex]

Therefore, the angular velocity [tex]\( \omega \)[/tex] of the ice skater, such that the radial acceleration does not exceed 10 times the gravitational acceleration, is approximately [tex]\( 16.98 \, \text{rad/s} \)[/tex].

Here's the summarized information:

- Radius [tex]\( r \)[/tex]: 0.34 meters
- Radial Acceleration [tex]\( a_r \)[/tex]: 98.0 [tex]\( \text{m/s}^2 \)[/tex]
- Angular Velocity [tex]\( \omega \)[/tex]: 16.98 [tex]\( \text{rad/s} \)[/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.