Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To find the values of [tex]\( h \)[/tex] and [tex]\( k \)[/tex] in the function [tex]\( g(x) = (x - h)^2 + k \)[/tex], we need to look at the vertex of the function.
The vertex form of a quadratic function [tex]\( g(x) = (x - h)^2 + k \)[/tex] tells us that the coordinates [tex]\( (h, k) \)[/tex] represent the vertex of the parabola.
In this problem, we're given that the vertex of the function [tex]\( g(x) \)[/tex] is at the point [tex]\((9, -8)\)[/tex].
Therefore:
- The value of [tex]\( h \)[/tex] is the x-coordinate of the vertex, which is [tex]\( 9 \)[/tex].
- The value of [tex]\( k \)[/tex] is the y-coordinate of the vertex, which is [tex]\( -8 \)[/tex].
So, we have:
[tex]\[ h = 9 \][/tex]
[tex]\[ k = -8 \][/tex]
Hence, the function [tex]\( g(x) = (x - h)^2 + k \)[/tex] can be written by substituting [tex]\( h \)[/tex] and [tex]\( k \)[/tex] with these values:
[tex]\[ g(x) = (x - 9)^2 - 8 \][/tex]
So, the filled-in function is:
[tex]\[ g(x) = (x - 9)^2 - 8 \][/tex]
The blanks in the function [tex]\( g(x) = (x - \square )^2 + \square \)[/tex] are filled as follows:
[tex]\[ g(x) = (x - \boxed{9})^2 + \boxed{-8} \][/tex]
Thus, the values of [tex]\( h \)[/tex] and [tex]\( k \)[/tex] are:
[tex]\[ h = 9 \][/tex]
[tex]\[ k = -8 \][/tex]
The vertex form of a quadratic function [tex]\( g(x) = (x - h)^2 + k \)[/tex] tells us that the coordinates [tex]\( (h, k) \)[/tex] represent the vertex of the parabola.
In this problem, we're given that the vertex of the function [tex]\( g(x) \)[/tex] is at the point [tex]\((9, -8)\)[/tex].
Therefore:
- The value of [tex]\( h \)[/tex] is the x-coordinate of the vertex, which is [tex]\( 9 \)[/tex].
- The value of [tex]\( k \)[/tex] is the y-coordinate of the vertex, which is [tex]\( -8 \)[/tex].
So, we have:
[tex]\[ h = 9 \][/tex]
[tex]\[ k = -8 \][/tex]
Hence, the function [tex]\( g(x) = (x - h)^2 + k \)[/tex] can be written by substituting [tex]\( h \)[/tex] and [tex]\( k \)[/tex] with these values:
[tex]\[ g(x) = (x - 9)^2 - 8 \][/tex]
So, the filled-in function is:
[tex]\[ g(x) = (x - 9)^2 - 8 \][/tex]
The blanks in the function [tex]\( g(x) = (x - \square )^2 + \square \)[/tex] are filled as follows:
[tex]\[ g(x) = (x - \boxed{9})^2 + \boxed{-8} \][/tex]
Thus, the values of [tex]\( h \)[/tex] and [tex]\( k \)[/tex] are:
[tex]\[ h = 9 \][/tex]
[tex]\[ k = -8 \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.