Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Find all zeros of the following polynomial. Be sure to find the appropriate number of solutions (counting multiplicity) using the Linear Factors Theorem.

[tex]\[ f(x) = x^5 - 7x^4 + 20x^3 - 68x^2 + 99x - 45 \][/tex]

Answer:

[tex]\[ \{3, 2, -2\} \][/tex]


Sagot :

To find the zeros of the polynomial

[tex]\[ f(x) = x^5 - 7x^4 + 20x^3 - 68x^2 + 99x - 45, \][/tex]

we will look for values of [tex]\( x \)[/tex] that satisfy [tex]\( f(x) = 0 \)[/tex]. According to the Fundamental Theorem of Algebra, a polynomial of degree [tex]\( n \)[/tex] has exactly [tex]\( n \)[/tex] complex roots (including multiplicity).

### Step-by-Step Solution:

1. Understanding the Polynomial:
- The given polynomial is a fifth-degree polynomial, which means we are looking for a total of five roots.

2. Identifying the Roots:
- Upon finding the roots, we'll observe that they are:
- [tex]\(1\)[/tex]
- [tex]\(5\)[/tex]
- [tex]\( -3i \)[/tex] (where [tex]\(i\)[/tex] is the imaginary unit, with [tex]\(i^2 = -1\)[/tex])
- [tex]\( 3i \)[/tex]

3. Analysis of the Roots:
- The root [tex]\( x = 1 \)[/tex] is a real number.
- The root [tex]\( x = 5 \)[/tex] is a real number.
- The root [tex]\( x = -3i \)[/tex] is an imaginary number.
- The root [tex]\( x = 3i \)[/tex] is an imaginary number.

4. Multiplicity:
- None of these roots appear more than once in our solution, so each has a multiplicity of 1.

So the zeros of the polynomial [tex]\( f(x) = x^5 - 7x^4 + 20x^3 - 68x^2 + 99x - 45 \)[/tex] are:

[tex]\[ \{1, 5, -3i, 3i\} \][/tex]

These zeros include two real roots (1 and 5) and two complex roots (-3i and 3i).