At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine how much Ana needs to invest now so that the total amount reaches [tex]$25,000 in 5 years with an interest rate of 4% compounded continuously, we can use the formula for continuously compounded interest:
\[ A = P \cdot e^{(rt)} \]
where:
- \( A \) is the final amount.
- \( P \) is the principal (the initial investment amount).
- \( e \) is the base of the natural logarithms (approximately equal to 2.71828).
- \( r \) is the annual interest rate (expressed as a decimal).
- \( t \) is the time the money is invested for, in years.
We need to solve for \( P \). Rearranging the formula to solve for \( P \):
\[ P = \frac{A}{e^{(rt)}} \]
Given:
- \( A = 25000 \)
- \( r = 0.04 \)
- \( t = 5 \) years
Let's plug in the values:
\[ P = \frac{25000}{e^{(0.04 \times 5)}} \]
First, compute the exponent:
\[ 0.04 \times 5 = 0.20 \]
Next, compute \( e^{0.20} \). Using a calculator, we find that \( e^{0.20} \approx 1.2214 \).
Now, substitute this back into the principal calculation:
\[ P = \frac{25000}{1.2214} \]
Perform the division:
\[ P \approx 20468.27 \]
Therefore, Ana needs to invest approximately $[/tex]20,468.27 now to have a total amount of $25,000 in 5 years, given an interest rate of 4% compounded continuously.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.