Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the orbital period of Neptune, we can use Kepler's third law, which relates the orbital period of a planet to its semi-major axis (the distance from the Sun in this context):
[tex]\[ T^2 = \frac{4\pi^2 r^3}{GM_{\text{sun}}} \][/tex]
where:
- [tex]\( T \)[/tex] is the orbital period of the planet,
- [tex]\( r \)[/tex] is the average distance from the planet to the Sun (in meters),
- [tex]\( G \)[/tex] is the gravitational constant [tex]\((6.67430 \times 10^{-11} \, m^3 kg^{-1} s^{-2})\)[/tex],
- [tex]\( M_{\text{sun}} \)[/tex] is the mass of the Sun [tex]\((2 \times 10^{30} \, kg)\)[/tex].
Firstly, we need to convert the distance from Astronomical Units (AU) to meters:
[tex]\[ 1 \, \text{AU} = 1.496 \times 10^{11} \, \text{m} \][/tex]
[tex]\[ \text{distance}_{\text{Neptune-Sun}} = 30 \, \text{AU} \times 1.496 \times 10^{11} \, \text{m/AU} = 4.488 \times 10^{12} \, \text{m} \][/tex]
Next, we plug in the values into Kepler's third law to find [tex]\( T \)[/tex]:
[tex]\[ T^2 = \frac{4 \pi^2 (4.488 \times 10^{12} \, \text{m})^3}{(6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2})(2 \times 10^{30} \,\text{kg})} \][/tex]
Calculating the numerator:
[tex]\[ 4 \pi^2 (4.488 \times 10^{12} \, \text{m})^3 \approx 2.67077 \times 10^{38} \, \text{m}^3 \][/tex]
Calculating the denominator:
[tex]\[ (6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2})(2 \times 10^{30} \, \text{kg}) = 1.33486 \times 10^{20} \, \text{m}^3 \text{s}^{-2} \][/tex]
Combining these:
[tex]\[ T^2 = \frac{2.67077 \times 10^{38}}{1.33486 \times 10^{20}} \approx 2.6735 \times 10^{19} \][/tex]
[tex]\[ T \approx \sqrt{2.6735 \times 10^{19}} \approx 5.1706 \times 10^{9} \, \text{s} \][/tex]
Finally, we convert the orbital period from seconds to Earth years:
[tex]\[ 1 \, \text{year} = 365.25 \, \text{days} \times 24 \, \text{hours/day} \times 60 \, \text{minutes/hour} \times 60 \, \text{seconds/minute} = 3.15576 \times 10^{7} \, \text{s/year} \][/tex]
[tex]\[ T_{\text{years}} = \frac{5.1706 \times 10^{9} \, \text{s}}{3.15576 \times 10^{7} \, \text{s/year}} \approx 163.85 \, \text{years} \][/tex]
Therefore, the orbital period of Neptune is approximately:
[tex]\[ 164 \, \text{Earth years} \][/tex]
So the correct answer is:
[tex]\[ \boxed{164 \, \text{Earth years}} \][/tex]
[tex]\[ T^2 = \frac{4\pi^2 r^3}{GM_{\text{sun}}} \][/tex]
where:
- [tex]\( T \)[/tex] is the orbital period of the planet,
- [tex]\( r \)[/tex] is the average distance from the planet to the Sun (in meters),
- [tex]\( G \)[/tex] is the gravitational constant [tex]\((6.67430 \times 10^{-11} \, m^3 kg^{-1} s^{-2})\)[/tex],
- [tex]\( M_{\text{sun}} \)[/tex] is the mass of the Sun [tex]\((2 \times 10^{30} \, kg)\)[/tex].
Firstly, we need to convert the distance from Astronomical Units (AU) to meters:
[tex]\[ 1 \, \text{AU} = 1.496 \times 10^{11} \, \text{m} \][/tex]
[tex]\[ \text{distance}_{\text{Neptune-Sun}} = 30 \, \text{AU} \times 1.496 \times 10^{11} \, \text{m/AU} = 4.488 \times 10^{12} \, \text{m} \][/tex]
Next, we plug in the values into Kepler's third law to find [tex]\( T \)[/tex]:
[tex]\[ T^2 = \frac{4 \pi^2 (4.488 \times 10^{12} \, \text{m})^3}{(6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2})(2 \times 10^{30} \,\text{kg})} \][/tex]
Calculating the numerator:
[tex]\[ 4 \pi^2 (4.488 \times 10^{12} \, \text{m})^3 \approx 2.67077 \times 10^{38} \, \text{m}^3 \][/tex]
Calculating the denominator:
[tex]\[ (6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2})(2 \times 10^{30} \, \text{kg}) = 1.33486 \times 10^{20} \, \text{m}^3 \text{s}^{-2} \][/tex]
Combining these:
[tex]\[ T^2 = \frac{2.67077 \times 10^{38}}{1.33486 \times 10^{20}} \approx 2.6735 \times 10^{19} \][/tex]
[tex]\[ T \approx \sqrt{2.6735 \times 10^{19}} \approx 5.1706 \times 10^{9} \, \text{s} \][/tex]
Finally, we convert the orbital period from seconds to Earth years:
[tex]\[ 1 \, \text{year} = 365.25 \, \text{days} \times 24 \, \text{hours/day} \times 60 \, \text{minutes/hour} \times 60 \, \text{seconds/minute} = 3.15576 \times 10^{7} \, \text{s/year} \][/tex]
[tex]\[ T_{\text{years}} = \frac{5.1706 \times 10^{9} \, \text{s}}{3.15576 \times 10^{7} \, \text{s/year}} \approx 163.85 \, \text{years} \][/tex]
Therefore, the orbital period of Neptune is approximately:
[tex]\[ 164 \, \text{Earth years} \][/tex]
So the correct answer is:
[tex]\[ \boxed{164 \, \text{Earth years}} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.