Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

A table of data is given.
\begin{tabular}{|c|l|}
\hline
[tex]$x$[/tex] & [tex]$f(x)$[/tex] \\
\hline
-2 & 128 \\
\hline
-1 & 27 \\
\hline
0 & 5 \\
\hline
1 & 1 \\
\hline
2 & 0.1 \\
\hline
\end{tabular}

Which exponential model best represents the data?

A. [tex]$f(x) = 5(1.2)^x$[/tex]
B. [tex]$f(x) = 5(0.2)^x$[/tex]
C. [tex]$f(x) = 2(5)^x$[/tex]
D. [tex]$f(x) = 2(0.5)^x$[/tex]


Sagot :

To determine which exponential model best represents the given data, we consider four different exponential models:

1. [tex]\( f(x) = 5(1.2)^x \)[/tex]
2. [tex]\( f(x) = 5(0.2)^x \)[/tex]
3. [tex]\( f(x) = 2(5)^x \)[/tex]
4. [tex]\( f(x) = 2(0.5)^x \)[/tex]

The table of data points is:

[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline -2 & 128 \\ \hline -1 & 27 \\ \hline 0 & 5 \\ \hline 1 & 1 \\ \hline 2 & 0.1 \\ \hline \end{array} \][/tex]

We need to evaluate the sum of the squared deviations between the observed data points and the values predicted by each model. This can be done by calculating the deviation for each data point, squaring it, and then summing these values for all data points.

### Calculating the Sum of Squared Deviations for Each Model

#### Model 1: [tex]\( f(x) = 5(1.2)^x \)[/tex]

For each [tex]\( x \)[/tex]:

- [tex]\( f(-2) = 5(1.2)^{-2} \approx 3.47 \)[/tex]
- [tex]\( f(-1) = 5(1.2)^{-1} \approx 4.17 \)[/tex]
- [tex]\( f(0) = 5(1.2)^0 = 5 \)[/tex]
- [tex]\( f(1) = 5(1.2)^1 = 6 \)[/tex]
- [tex]\( f(2) = 5(1.2)^2 = 7.2 \)[/tex]

Sum of Squared Deviations:
[tex]\[ (128 - 3.47)^2 + (27 - 4.17)^2 + (5 - 5)^2 + (1 - 6)^2 + (0.1 - 7.2)^2 \][/tex]

#### Model 2: [tex]\( f(x) = 5(0.2)^x \)[/tex]

For each [tex]\( x \)[/tex]:

- [tex]\( f(-2) = 5(0.2)^{-2} = 125 \)[/tex]
- [tex]\( f(-1) = 5(0.2)^{-1} = 25 \)[/tex]
- [tex]\( f(0) = 5(0.2)^0 = 5 \)[/tex]
- [tex]\( f(1) = 5(0.2)^1 = 1 \)[/tex]
- [tex]\( f(2) = 5(0.2)^2 = 0.2 \)[/tex]

Sum of Squared Deviations:
[tex]\[ (128 - 125)^2 + (27 - 25)^2 + (5 - 5)^2 + (1 - 1)^2 + (0.1 - 0.2)^2 \][/tex]

#### Model 3: [tex]\( f(x) = 2(5)^x \)[/tex]

For each [tex]\( x \)[/tex]:

- [tex]\( f(-2) = 2(5)^{-2} = 0.08 \)[/tex]
- [tex]\( f(-1) = 2(5)^{-1} = 0.4 \)[/tex]
- [tex]\( f(0) = 2(5)^0 = 2 \)[/tex]
- [tex]\( f(1) = 2(5)^1 = 10 \)[/tex]
- [tex]\( f(2) = 2(5)^2 = 50 \)[/tex]

Sum of Squared Deviations:
[tex]\[ (128 - 0.08)^2 + (27 - 0.4)^2 + (5 - 2)^2 + (1 - 10)^2 + (0.1 - 50)^2 \][/tex]

#### Model 4: [tex]\( f(x) = 2(0.5)^x \)[/tex]

For each [tex]\( x \)[/tex]:

- [tex]\( f(-2) = 2(0.5)^{-2} = 8 \)[/tex]
- [tex]\( f(-1) = 2(0.5)^{-1} = 4 \)[/tex]
- [tex]\( f(0) = 2(0.5)^0 = 2 \)[/tex]
- [tex]\( f(1) = 2(0.5)^1 = 1 \)[/tex]
- [tex]\( f(2) = 2(0.5)^2 = 0.5 \)[/tex]

Sum of Squared Deviations:
[tex]\[ (128 - 8)^2 + (27 - 4)^2 + (5 - 2)^2 + (1 - 1)^2 + (0.1 - 0.5)^2 \][/tex]

### Identifying the Best Model

By evaluating each model using the sum of squared deviations, we find the model that fits the data most closely. This model will have the smallest total sum of squared deviations.

The results from our computations indicate that the sum of squared deviations for the second model [tex]\( f(x) = 5(0.2)^x \)[/tex] is the smallest.

Thus, the best model to represent the data is:

[tex]\[ f(x) = 5(0.2)^x \][/tex]

With a sum of squared deviations of approximately 13.01.