Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Which of the following describes the zeroes of the graph of [tex]f(x)=-x^5+9x^4-18x^3[/tex]?

A. 0 with multiplicity 3, -3 with multiplicity 2, and -2 with multiplicity 1
B. 0 with multiplicity 3, 3 with multiplicity 1, and 6 with multiplicity 1
C. 0 with multiplicity 3, 3 with multiplicity 2, and 2 with multiplicity 1
D. 0 with multiplicity 3, -3 with multiplicity 1, and -6 with multiplicity 1


Sagot :

To analyze the zeroes of the function [tex]\(f(x) = -x^5 + 9x^4 - 18x^3\)[/tex], we aim to determine the points where the function equals zero. Let's carefully consider the roots and their multiplicities based on the detailed solution provided:

### Step 1: Finding the roots
The roots of the function are the values of [tex]\(x\)[/tex] at which [tex]\(f(x) = 0\)[/tex].

- The given solution identifies the roots of the function as [tex]\(0\)[/tex], [tex]\(3\)[/tex], and [tex]\(6\)[/tex].

### Step 2: Determining the multiplicities
The multiplicity of a root indicates how many times that root appears as a solution of the equation.

- The multiplicities of the roots found are:
- Root [tex]\(0\)[/tex] has a multiplicity of [tex]\(3\)[/tex].
- Root [tex]\(3\)[/tex] has a multiplicity of [tex]\(1\)[/tex].
- Root [tex]\(6\)[/tex] has a multiplicity of [tex]\(1\)[/tex].

### Conclusion:
Based on the given information:
- The root [tex]\(0\)[/tex] has multiplicity [tex]\(3\)[/tex].
- The root [tex]\(3\)[/tex] has multiplicity [tex]\(1\)[/tex].
- The root [tex]\(6\)[/tex] has multiplicity [tex]\(1\)[/tex].

Thus, the correct description of the zeroes of the graph of [tex]\(f(x) = -x^5 + 9x^4 - 18x^3\)[/tex] is:
[tex]\[ 0 \text{ with multiplicity } 3, 3 \text{ with multiplicity } 1, \text{ and } 6 \text{ with multiplicity } 1. \][/tex]

This matches with the option:
[tex]\[ \boxed{0 \text{ with multiplicity 3, 3 with multiplicity 1, and 6 with multiplicity 1}} \][/tex]