Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the additive inverse of the complex number [tex]\(-8 + 3i\)[/tex], follow these steps:
1. Understand what the additive inverse means: The additive inverse of a number is another number that, when added to the original number, results in zero. For a complex number [tex]\( a + bi \)[/tex], its additive inverse will be [tex]\( -a - bi \)[/tex] because:
[tex]\[ (a + bi) + (-a - bi) = a + bi - a - bi = 0 \][/tex]
2. Identify the real and imaginary components: In the given complex number [tex]\(-8 + 3i\)[/tex]:
- The real part is [tex]\(-8\)[/tex].
- The imaginary part is [tex]\(3i\)[/tex].
3. Find the additive inverse for each part:
- The additive inverse of the real part [tex]\(-8\)[/tex] is [tex]\(8\)[/tex] ([tex]\(-(-8) = 8\)[/tex]).
- The additive inverse of the imaginary part [tex]\(3i\)[/tex] is [tex]\(-3i\)[/tex] ([tex]\(-3i\)[/tex]).
4. Combine these parts to form the additive inverse of the complex number:
[tex]\[ 8 - 3i \][/tex]
Therefore, the additive inverse of the complex number [tex]\(-8 + 3i\)[/tex] is [tex]\[\boxed{8 - 3i}\][/tex].
1. Understand what the additive inverse means: The additive inverse of a number is another number that, when added to the original number, results in zero. For a complex number [tex]\( a + bi \)[/tex], its additive inverse will be [tex]\( -a - bi \)[/tex] because:
[tex]\[ (a + bi) + (-a - bi) = a + bi - a - bi = 0 \][/tex]
2. Identify the real and imaginary components: In the given complex number [tex]\(-8 + 3i\)[/tex]:
- The real part is [tex]\(-8\)[/tex].
- The imaginary part is [tex]\(3i\)[/tex].
3. Find the additive inverse for each part:
- The additive inverse of the real part [tex]\(-8\)[/tex] is [tex]\(8\)[/tex] ([tex]\(-(-8) = 8\)[/tex]).
- The additive inverse of the imaginary part [tex]\(3i\)[/tex] is [tex]\(-3i\)[/tex] ([tex]\(-3i\)[/tex]).
4. Combine these parts to form the additive inverse of the complex number:
[tex]\[ 8 - 3i \][/tex]
Therefore, the additive inverse of the complex number [tex]\(-8 + 3i\)[/tex] is [tex]\[\boxed{8 - 3i}\][/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.