Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To evaluate the limit
[tex]\[ \lim_{x \to -2^+} \left( \frac{1}{x+2} - \frac{1}{\sqrt{x+2}} \right), \][/tex]
we need to analyze the behavior of each term separately and see if we can simplify the expression.
First, let's identify the forms of the terms as [tex]\( x \)[/tex] approaches [tex]\(-2\)[/tex] from the right ([tex]\(x \rightarrow -2^+\)[/tex]):
1. [tex]\( \frac{1}{x+2} \)[/tex] becomes very large because [tex]\( x+2 \)[/tex] approaches [tex]\( 0^+ \)[/tex], making the term [tex]\( \frac{1}{x+2} \)[/tex] tend to [tex]\( +\infty \)[/tex].
2. [tex]\( \frac{1}{\sqrt{x+2}} \)[/tex] similarly becomes very large because [tex]\( \sqrt{x+2} \)[/tex] also approaches [tex]\( 0^+ \)[/tex], making the term [tex]\( \frac{1}{\sqrt{x+2}} \)[/tex] tend to [tex]\( +\infty \)[/tex].
Given that direct substitution leads to the indeterminate form [tex]\( \infty - \infty \)[/tex], we need to manipulate the expression to apply l'Hôpital's Rule.
Let's rewrite the expression inside the limit by finding a common denominator:
[tex]\[ \frac{1}{x+2} - \frac{1}{\sqrt{x+2}} = \frac{\sqrt{x+2} - (x+2)}{(x+2)\sqrt{x+2}}. \][/tex]
Now, simplify the numerator:
[tex]\[ \sqrt{x+2} - (x+2). \][/tex]
We have:
[tex]\[ \lim_{x \to -2^+} \frac{\sqrt{x+2} - (x+2)}{(x+2)\sqrt{x+2}}. \][/tex]
To handle this limit, let's use l'Hôpital's Rule, which requires taking derivatives of the numerator and denominator since the limit is still of the form [tex]\(\frac{0}{0}\)[/tex] as [tex]\( x \to -2^+ \)[/tex].
Calculate the derivative of the numerator and the denominator:
1. The derivative of the numerator:
[tex]\[ \frac{d}{dx} [\sqrt{x+2} - (x+2)] = \frac{1}{2\sqrt{x+2}} - 1. \][/tex]
2. The derivative of the denominator:
[tex]\[ \frac{d}{dx} [(x+2)\sqrt{x+2}] = \frac{d}{dx} [(x+2)^{3/2}] = \frac{3}{2} (x+2)^{1/2}. \][/tex]
Therefore, applying l'Hôpital's Rule, the limit becomes:
[tex]\[ \lim_{x \to -2^+} \frac{\frac{1}{2\sqrt{x+2}} - 1}{\frac{3}{2} \sqrt{x+2}}. \][/tex]
Simplify the fraction:
[tex]\[ = \lim_{x \to -2^+} \frac{1 - 2\sqrt{x+2}}{3(x+2)}. \][/tex]
As [tex]\( x \to -2^+ \)[/tex], the term [tex]\( 2\sqrt{x+2} \)[/tex] approaches [tex]\( 0 \)[/tex] much faster than [tex]\( 1 \)[/tex], so the fraction simplifies:
[tex]\[ \lim_{x \to -2^+} \frac{1 - 2\sqrt{x+2}}{3(x+2)} = \lim_{x \to -2^+} \frac{1 - 0}{3(x+2)} = \lim_{x \to -2^+} \frac{1}{3(x+2)}. \][/tex]
Since [tex]\(3(x + 2)\)[/tex] approaches 0 from the positive side:
[tex]\[ = \frac{1}{3} \times \infty = \infty. \][/tex]
So, the given limit evaluates to [tex]\( \infty \)[/tex].
[tex]\[ \lim_{x \to -2^+} \left( \frac{1}{x+2} - \frac{1}{\sqrt{x+2}} \right), \][/tex]
we need to analyze the behavior of each term separately and see if we can simplify the expression.
First, let's identify the forms of the terms as [tex]\( x \)[/tex] approaches [tex]\(-2\)[/tex] from the right ([tex]\(x \rightarrow -2^+\)[/tex]):
1. [tex]\( \frac{1}{x+2} \)[/tex] becomes very large because [tex]\( x+2 \)[/tex] approaches [tex]\( 0^+ \)[/tex], making the term [tex]\( \frac{1}{x+2} \)[/tex] tend to [tex]\( +\infty \)[/tex].
2. [tex]\( \frac{1}{\sqrt{x+2}} \)[/tex] similarly becomes very large because [tex]\( \sqrt{x+2} \)[/tex] also approaches [tex]\( 0^+ \)[/tex], making the term [tex]\( \frac{1}{\sqrt{x+2}} \)[/tex] tend to [tex]\( +\infty \)[/tex].
Given that direct substitution leads to the indeterminate form [tex]\( \infty - \infty \)[/tex], we need to manipulate the expression to apply l'Hôpital's Rule.
Let's rewrite the expression inside the limit by finding a common denominator:
[tex]\[ \frac{1}{x+2} - \frac{1}{\sqrt{x+2}} = \frac{\sqrt{x+2} - (x+2)}{(x+2)\sqrt{x+2}}. \][/tex]
Now, simplify the numerator:
[tex]\[ \sqrt{x+2} - (x+2). \][/tex]
We have:
[tex]\[ \lim_{x \to -2^+} \frac{\sqrt{x+2} - (x+2)}{(x+2)\sqrt{x+2}}. \][/tex]
To handle this limit, let's use l'Hôpital's Rule, which requires taking derivatives of the numerator and denominator since the limit is still of the form [tex]\(\frac{0}{0}\)[/tex] as [tex]\( x \to -2^+ \)[/tex].
Calculate the derivative of the numerator and the denominator:
1. The derivative of the numerator:
[tex]\[ \frac{d}{dx} [\sqrt{x+2} - (x+2)] = \frac{1}{2\sqrt{x+2}} - 1. \][/tex]
2. The derivative of the denominator:
[tex]\[ \frac{d}{dx} [(x+2)\sqrt{x+2}] = \frac{d}{dx} [(x+2)^{3/2}] = \frac{3}{2} (x+2)^{1/2}. \][/tex]
Therefore, applying l'Hôpital's Rule, the limit becomes:
[tex]\[ \lim_{x \to -2^+} \frac{\frac{1}{2\sqrt{x+2}} - 1}{\frac{3}{2} \sqrt{x+2}}. \][/tex]
Simplify the fraction:
[tex]\[ = \lim_{x \to -2^+} \frac{1 - 2\sqrt{x+2}}{3(x+2)}. \][/tex]
As [tex]\( x \to -2^+ \)[/tex], the term [tex]\( 2\sqrt{x+2} \)[/tex] approaches [tex]\( 0 \)[/tex] much faster than [tex]\( 1 \)[/tex], so the fraction simplifies:
[tex]\[ \lim_{x \to -2^+} \frac{1 - 2\sqrt{x+2}}{3(x+2)} = \lim_{x \to -2^+} \frac{1 - 0}{3(x+2)} = \lim_{x \to -2^+} \frac{1}{3(x+2)}. \][/tex]
Since [tex]\(3(x + 2)\)[/tex] approaches 0 from the positive side:
[tex]\[ = \frac{1}{3} \times \infty = \infty. \][/tex]
So, the given limit evaluates to [tex]\( \infty \)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.