At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the potential energy stored in a compressed spring, we can use the formula for elastic potential energy:
[tex]\[ PE = \frac{1}{2} k x^2 \][/tex]
where [tex]\( PE \)[/tex] is the potential energy, [tex]\( k \)[/tex] is the spring constant, and [tex]\( x \)[/tex] is the displacement (compression) of the spring.
Given the values:
- Displacement, [tex]\( x = 0.65 \)[/tex] meters
- Spring constant, [tex]\( k = 95 \)[/tex] N/m
We can now substitute these values into the formula:
[tex]\[ PE = \frac{1}{2} \times 95 \times (0.65)^2 \][/tex]
First, calculate [tex]\( x^2 \)[/tex]:
[tex]\[ (0.65)^2 = 0.4225 \][/tex]
Next, multiply this value by the spring constant [tex]\( k \)[/tex]:
[tex]\[ 95 \times 0.4225 = 40.1375 \][/tex]
Then, multiply by [tex]\( \frac{1}{2} \)[/tex]:
[tex]\[ \frac{1}{2} \times 40.1375 = 20.06875 \][/tex]
Therefore, the potential energy stored in the spring is approximately 20 J.
So, the correct answer is:
[tex]\[ \boxed{20 \text{ J}} \][/tex]
[tex]\[ PE = \frac{1}{2} k x^2 \][/tex]
where [tex]\( PE \)[/tex] is the potential energy, [tex]\( k \)[/tex] is the spring constant, and [tex]\( x \)[/tex] is the displacement (compression) of the spring.
Given the values:
- Displacement, [tex]\( x = 0.65 \)[/tex] meters
- Spring constant, [tex]\( k = 95 \)[/tex] N/m
We can now substitute these values into the formula:
[tex]\[ PE = \frac{1}{2} \times 95 \times (0.65)^2 \][/tex]
First, calculate [tex]\( x^2 \)[/tex]:
[tex]\[ (0.65)^2 = 0.4225 \][/tex]
Next, multiply this value by the spring constant [tex]\( k \)[/tex]:
[tex]\[ 95 \times 0.4225 = 40.1375 \][/tex]
Then, multiply by [tex]\( \frac{1}{2} \)[/tex]:
[tex]\[ \frac{1}{2} \times 40.1375 = 20.06875 \][/tex]
Therefore, the potential energy stored in the spring is approximately 20 J.
So, the correct answer is:
[tex]\[ \boxed{20 \text{ J}} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.