Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Alright, let's solve this problem step-by-step. The half-life of argon-39 is 269 years, and we want to determine the fraction of the original amount of argon-39 remaining after 1,076 years.
1. Calculate the number of half-lives:
A half-life is the time required for half of a sample of a radioactive substance to decay. To find how many half-lives correspond to 1,076 years, we use the formula:
[tex]\[ \text{Number of half-lives} = \frac{\text{Time elapsed}}{\text{Half-life}} \][/tex]
Substituting the given values:
[tex]\[ \text{Number of half-lives} = \frac{1076 \text{ years}}{269 \text{ years}} = 4 \][/tex]
So, 1,076 years is exactly 4 half-lives.
2. Calculate the remaining fraction:
After each half-life, half of the remaining argon-39 decays. Therefore, after [tex]\(n\)[/tex] half-lives, the fraction remaining is calculated by
[tex]\[ \left(\frac{1}{2}\right)^n \][/tex]
Here, [tex]\( n = 4 \)[/tex]:
[tex]\[ \left(\frac{1}{2}\right)^4 = \frac{1}{16} \][/tex]
3. Identify the correct answer:
The remaining fraction of the original amount of argon-39 after 1,076 years is [tex]\( \frac{1}{16} \)[/tex].
Therefore, the correct answer is:
[tex]\[ \boxed{\frac{1}{16}} \][/tex]
The corresponding choice is:
C. [tex]$\frac{1}{16}$[/tex]
1. Calculate the number of half-lives:
A half-life is the time required for half of a sample of a radioactive substance to decay. To find how many half-lives correspond to 1,076 years, we use the formula:
[tex]\[ \text{Number of half-lives} = \frac{\text{Time elapsed}}{\text{Half-life}} \][/tex]
Substituting the given values:
[tex]\[ \text{Number of half-lives} = \frac{1076 \text{ years}}{269 \text{ years}} = 4 \][/tex]
So, 1,076 years is exactly 4 half-lives.
2. Calculate the remaining fraction:
After each half-life, half of the remaining argon-39 decays. Therefore, after [tex]\(n\)[/tex] half-lives, the fraction remaining is calculated by
[tex]\[ \left(\frac{1}{2}\right)^n \][/tex]
Here, [tex]\( n = 4 \)[/tex]:
[tex]\[ \left(\frac{1}{2}\right)^4 = \frac{1}{16} \][/tex]
3. Identify the correct answer:
The remaining fraction of the original amount of argon-39 after 1,076 years is [tex]\( \frac{1}{16} \)[/tex].
Therefore, the correct answer is:
[tex]\[ \boxed{\frac{1}{16}} \][/tex]
The corresponding choice is:
C. [tex]$\frac{1}{16}$[/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.