Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
The function [tex]\( f(x) = 9^x - 8 \)[/tex] can be derived from the function [tex]\( g(x) = 9^x \)[/tex] by applying a transformation. Here's how we can analyze the situation step-by-step:
### Transformation for the Graph
In the function [tex]\( f(x) = 9^x - 8 \)[/tex], the term [tex]\(-8\)[/tex] indicates a vertical shift downward by 8 units. The value of the function [tex]\( f(x) \)[/tex] is the same as [tex]\( g(x) \)[/tex] but decreased by a constant value of 8 for any given [tex]\( x \)[/tex]. Hence:
- The correct answer for the transformation is:
[tex]\[ (d) \text{ shifting the graph of } g(x) \text{ downward 8 units} \][/tex]
Your answer: [tex]\( \boxed{d} \)[/tex]
### Domain of the Function
The domain of [tex]\( g(x) = 9^x \)[/tex] is all real numbers, [tex]\( (-\infty, \infty) \)[/tex]. Subtracting 8 from [tex]\( g(x) \)[/tex] does not affect the domain, hence the domain of [tex]\( f(x) = 9^x - 8 \)[/tex]:
- The domain remains [tex]\( (-\infty, \infty) \)[/tex].
Your answer: [tex]\( \boxed{Yes} \)[/tex]
### Range of the Function
For the function [tex]\( g(x) = 9^x \)[/tex], the range is [tex]\( (0, \infty) \)[/tex] since [tex]\( 9^x \)[/tex] is always positive for any real number [tex]\( x \)[/tex].
When we transform [tex]\( g(x) \)[/tex] by subtracting 8 to form [tex]\( f(x) \)[/tex], the range shifts accordingly. Since the smallest value [tex]\( g(x) \)[/tex] can approach is 0 (but not including 0), the smallest value [tex]\( f(x) \)[/tex] will approach is [tex]\( 0 - 8 = -8 \)[/tex]. Therefore, the range of [tex]\( f(x) \)[/tex] becomes [tex]\( (-8, \infty) \)[/tex].
- The minimum value, [tex]\( A \)[/tex], in the range [tex]\( (A, \infty) \)[/tex] is:
[tex]\[ A = -8 \][/tex]
Your answer: [tex]\( \boxed{-8} \)[/tex]
### Transformation for the Graph
In the function [tex]\( f(x) = 9^x - 8 \)[/tex], the term [tex]\(-8\)[/tex] indicates a vertical shift downward by 8 units. The value of the function [tex]\( f(x) \)[/tex] is the same as [tex]\( g(x) \)[/tex] but decreased by a constant value of 8 for any given [tex]\( x \)[/tex]. Hence:
- The correct answer for the transformation is:
[tex]\[ (d) \text{ shifting the graph of } g(x) \text{ downward 8 units} \][/tex]
Your answer: [tex]\( \boxed{d} \)[/tex]
### Domain of the Function
The domain of [tex]\( g(x) = 9^x \)[/tex] is all real numbers, [tex]\( (-\infty, \infty) \)[/tex]. Subtracting 8 from [tex]\( g(x) \)[/tex] does not affect the domain, hence the domain of [tex]\( f(x) = 9^x - 8 \)[/tex]:
- The domain remains [tex]\( (-\infty, \infty) \)[/tex].
Your answer: [tex]\( \boxed{Yes} \)[/tex]
### Range of the Function
For the function [tex]\( g(x) = 9^x \)[/tex], the range is [tex]\( (0, \infty) \)[/tex] since [tex]\( 9^x \)[/tex] is always positive for any real number [tex]\( x \)[/tex].
When we transform [tex]\( g(x) \)[/tex] by subtracting 8 to form [tex]\( f(x) \)[/tex], the range shifts accordingly. Since the smallest value [tex]\( g(x) \)[/tex] can approach is 0 (but not including 0), the smallest value [tex]\( f(x) \)[/tex] will approach is [tex]\( 0 - 8 = -8 \)[/tex]. Therefore, the range of [tex]\( f(x) \)[/tex] becomes [tex]\( (-8, \infty) \)[/tex].
- The minimum value, [tex]\( A \)[/tex], in the range [tex]\( (A, \infty) \)[/tex] is:
[tex]\[ A = -8 \][/tex]
Your answer: [tex]\( \boxed{-8} \)[/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.