At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine whether two events are independent, we need to compare the probability of one event happening alone with the probability of that event happening given that the other event has occurred. In this case, we need to compare the probability of being a student ([tex]\( P(\text{student}) \)[/tex]) with the probability of being a student given that the person prefers sharks ([tex]\( P(\text{student} \mid \text{shark}) \)[/tex]).
### Step-by-Step Solution
1. Calculate [tex]\( P(\text{student}) \)[/tex]:
- Total number of people surveyed = 115
- Total number of students = 100
[tex]\[ P(\text{student}) = \frac{\text{Total number of students}}{\text{Total number of people surveyed}} = \frac{100}{115} \approx 0.8696 \][/tex]
2. Calculate [tex]\( P(\text{student} \mid \text{shark}) \)[/tex]:
- Total number of people preferring sharks = 95
- Number of students preferring sharks = 90
[tex]\[ P(\text{student} \mid \text{shark}) = \frac{\text{Number of students preferring sharks}}{\text{Total number of people preferring sharks}} = \frac{90}{95} \approx 0.9474 \][/tex]
3. Compare the probabilities:
- [tex]\( P(\text{student}) \approx 0.8696 \)[/tex]
- [tex]\( P(\text{student} \mid \text{shark}) \approx 0.9474 \)[/tex]
Since [tex]\( P(\text{student}) \)[/tex] and [tex]\( P(\text{student} \mid \text{shark}) \)[/tex] are not approximately equal (0.8696 is not close to 0.9474), the events are not independent.
### Conclusion
Based on the calculations, being a student and preferring sharks are not independent events. Therefore, the correct answer is:
B. No, they are not independent because [tex]\( P(\text{student}) \approx 0.87 \)[/tex] and [tex]\( P(\text{student} \mid \text{shark}) \approx 0.95 \)[/tex].
### Step-by-Step Solution
1. Calculate [tex]\( P(\text{student}) \)[/tex]:
- Total number of people surveyed = 115
- Total number of students = 100
[tex]\[ P(\text{student}) = \frac{\text{Total number of students}}{\text{Total number of people surveyed}} = \frac{100}{115} \approx 0.8696 \][/tex]
2. Calculate [tex]\( P(\text{student} \mid \text{shark}) \)[/tex]:
- Total number of people preferring sharks = 95
- Number of students preferring sharks = 90
[tex]\[ P(\text{student} \mid \text{shark}) = \frac{\text{Number of students preferring sharks}}{\text{Total number of people preferring sharks}} = \frac{90}{95} \approx 0.9474 \][/tex]
3. Compare the probabilities:
- [tex]\( P(\text{student}) \approx 0.8696 \)[/tex]
- [tex]\( P(\text{student} \mid \text{shark}) \approx 0.9474 \)[/tex]
Since [tex]\( P(\text{student}) \)[/tex] and [tex]\( P(\text{student} \mid \text{shark}) \)[/tex] are not approximately equal (0.8696 is not close to 0.9474), the events are not independent.
### Conclusion
Based on the calculations, being a student and preferring sharks are not independent events. Therefore, the correct answer is:
B. No, they are not independent because [tex]\( P(\text{student}) \approx 0.87 \)[/tex] and [tex]\( P(\text{student} \mid \text{shark}) \approx 0.95 \)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.