At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find the inverse of the function [tex]\( f(x) = \sqrt[3]{x - 2} \)[/tex], we need to follow these steps:
1. Replace [tex]\( f(x) \)[/tex] with [tex]\( y \)[/tex]:
[tex]\[ y = \sqrt[3]{x - 2} \][/tex]
2. Swap [tex]\( x \)[/tex] and [tex]\( y \)[/tex] to find the inverse function [tex]\( f^{-1}(x) \)[/tex]:
[tex]\[ x = \sqrt[3]{y - 2} \][/tex]
3. Isolate [tex]\( y \)[/tex] by undoing the cube root. To do this, cube both sides of the equation:
[tex]\[ x^3 = y - 2 \][/tex]
4. Solve for [tex]\( y \)[/tex]:
[tex]\[ y = x^3 + 2 \][/tex]
Thus, the inverse function [tex]\( f^{-1}(x) \)[/tex] is:
[tex]\[ f^{-1}(x) = x^3 + 2 \][/tex]
So the inverse of the function [tex]\( f(x) = \sqrt[3]{x - 2} \)[/tex] is:
[tex]\[ f^{-1}(x) = x^3 + 2 \][/tex]
1. Replace [tex]\( f(x) \)[/tex] with [tex]\( y \)[/tex]:
[tex]\[ y = \sqrt[3]{x - 2} \][/tex]
2. Swap [tex]\( x \)[/tex] and [tex]\( y \)[/tex] to find the inverse function [tex]\( f^{-1}(x) \)[/tex]:
[tex]\[ x = \sqrt[3]{y - 2} \][/tex]
3. Isolate [tex]\( y \)[/tex] by undoing the cube root. To do this, cube both sides of the equation:
[tex]\[ x^3 = y - 2 \][/tex]
4. Solve for [tex]\( y \)[/tex]:
[tex]\[ y = x^3 + 2 \][/tex]
Thus, the inverse function [tex]\( f^{-1}(x) \)[/tex] is:
[tex]\[ f^{-1}(x) = x^3 + 2 \][/tex]
So the inverse of the function [tex]\( f(x) = \sqrt[3]{x - 2} \)[/tex] is:
[tex]\[ f^{-1}(x) = x^3 + 2 \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.