Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the type of sequence represented by the table, we first need to analyze the relationship between the successive [tex]\( y \)[/tex]-values.
Given the table:
[tex]\[ \begin{array}{|c|c|c|c|c|} \hline x & 1 & 2 & 3 & 4 \\ \hline y & 5 & 3 & 1.8 & 1.08 \\ \hline \end{array} \][/tex]
Step 1: Identify the successive [tex]\( y \)[/tex]-values.
- The [tex]\( y \)[/tex]-values are: 5, 3, 1.8, 1.08
Step 2: Check for an arithmetic sequence.
- In an arithmetic sequence, the difference between successive [tex]\( y \)[/tex]-values is constant.
- Calculate the differences:
- [tex]\( y_2 - y_1 = 3 - 5 = -2 \)[/tex]
- [tex]\( y_3 - y_2 = 1.8 - 3 = -1.2 \)[/tex]
- [tex]\( y_4 - y_3 = 1.08 - 1.8 = -0.72 \)[/tex]
- Since the differences are not constant ([tex]\(-2, -1.2, -0.72\)[/tex]), the sequence is not arithmetic.
Step 3: Check for a geometric sequence.
- In a geometric sequence, the ratio between successive [tex]\( y \)[/tex]-values is constant.
- Calculate the ratios:
- [tex]\( \frac{y_2}{y_1} = \frac{3}{5} = 0.6 \)[/tex]
- [tex]\( \frac{y_3}{y_2} = \frac{1.8}{3} = 0.6 \)[/tex]
- [tex]\( \frac{y_4}{y_3} = \frac{1.08}{1.8} = 0.6 \)[/tex]
- Since the ratios are all equal to 0.6, the sequence is geometric with a common ratio of 0.6.
Thus, the correct answer is:
B. The table represents a geometric sequence because the successive [tex]\( y \)[/tex]-values have a common ratio of 0.6.
Given the table:
[tex]\[ \begin{array}{|c|c|c|c|c|} \hline x & 1 & 2 & 3 & 4 \\ \hline y & 5 & 3 & 1.8 & 1.08 \\ \hline \end{array} \][/tex]
Step 1: Identify the successive [tex]\( y \)[/tex]-values.
- The [tex]\( y \)[/tex]-values are: 5, 3, 1.8, 1.08
Step 2: Check for an arithmetic sequence.
- In an arithmetic sequence, the difference between successive [tex]\( y \)[/tex]-values is constant.
- Calculate the differences:
- [tex]\( y_2 - y_1 = 3 - 5 = -2 \)[/tex]
- [tex]\( y_3 - y_2 = 1.8 - 3 = -1.2 \)[/tex]
- [tex]\( y_4 - y_3 = 1.08 - 1.8 = -0.72 \)[/tex]
- Since the differences are not constant ([tex]\(-2, -1.2, -0.72\)[/tex]), the sequence is not arithmetic.
Step 3: Check for a geometric sequence.
- In a geometric sequence, the ratio between successive [tex]\( y \)[/tex]-values is constant.
- Calculate the ratios:
- [tex]\( \frac{y_2}{y_1} = \frac{3}{5} = 0.6 \)[/tex]
- [tex]\( \frac{y_3}{y_2} = \frac{1.8}{3} = 0.6 \)[/tex]
- [tex]\( \frac{y_4}{y_3} = \frac{1.08}{1.8} = 0.6 \)[/tex]
- Since the ratios are all equal to 0.6, the sequence is geometric with a common ratio of 0.6.
Thus, the correct answer is:
B. The table represents a geometric sequence because the successive [tex]\( y \)[/tex]-values have a common ratio of 0.6.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.