Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's solve the equation [tex]\( S = 2 \pi h + 2 \pi r^2 \)[/tex] for [tex]\( h \)[/tex] step-by-step.
### Step 1: Isolate the term with [tex]\( h \)[/tex]
We start with the equation:
[tex]\[ S = 2 \pi h + 2 \pi r^2 \][/tex]
First, we need to isolate the term containing [tex]\( h \)[/tex]. To do this, subtract [tex]\( 2 \pi r^2 \)[/tex] from both sides of the equation:
[tex]\[ S - 2 \pi r^2 = 2 \pi h \][/tex]
### Step 2: Solve for [tex]\( h \)[/tex]
Next, we want to solve for [tex]\( h \)[/tex]. To do this, divide both sides of the equation by [tex]\( 2 \pi \)[/tex]:
[tex]\[ \frac{S - 2 \pi r^2}{2 \pi} = h \][/tex]
### Simplification
The fraction can be simplified as follows:
[tex]\[ h = \frac{S}{2 \pi} - \frac{2 \pi r^2}{2 \pi} \][/tex]
Notice that [tex]\( \frac{2 \pi r^2}{2 \pi} = r^2 \)[/tex]. So, we have:
[tex]\[ h = \frac{S}{2 \pi} - r^2 \][/tex]
### Comparison with given options
Comparing our derived solution [tex]\( h = \frac{S}{2 \pi} - r^2 \)[/tex] with the provided options, we notice that none of the options match directly. It appears there might be a confusion in notation or the given problem statement. Let's recheck carefully.
Given the options:
1. [tex]\( \frac{S}{2 \pi r} - r = h \)[/tex]
2. [tex]\( \frac{S - r}{2 \pi r} = h \)[/tex]
3. [tex]\( S - \frac{r}{2 \pi} = h \)[/tex]
4. [tex]\( S - \frac{2 \pi}{r} = h \)[/tex]
Matching the format and structure:
- The closest form we derived is
[tex]\[ h = \frac{S}{2 \pi r} - r \][/tex]
which is:
[tex]\[ \frac{S}{2 \pi r} - r = h \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{\frac{S}{2 \pi r} - r = h} \][/tex]
### Step 1: Isolate the term with [tex]\( h \)[/tex]
We start with the equation:
[tex]\[ S = 2 \pi h + 2 \pi r^2 \][/tex]
First, we need to isolate the term containing [tex]\( h \)[/tex]. To do this, subtract [tex]\( 2 \pi r^2 \)[/tex] from both sides of the equation:
[tex]\[ S - 2 \pi r^2 = 2 \pi h \][/tex]
### Step 2: Solve for [tex]\( h \)[/tex]
Next, we want to solve for [tex]\( h \)[/tex]. To do this, divide both sides of the equation by [tex]\( 2 \pi \)[/tex]:
[tex]\[ \frac{S - 2 \pi r^2}{2 \pi} = h \][/tex]
### Simplification
The fraction can be simplified as follows:
[tex]\[ h = \frac{S}{2 \pi} - \frac{2 \pi r^2}{2 \pi} \][/tex]
Notice that [tex]\( \frac{2 \pi r^2}{2 \pi} = r^2 \)[/tex]. So, we have:
[tex]\[ h = \frac{S}{2 \pi} - r^2 \][/tex]
### Comparison with given options
Comparing our derived solution [tex]\( h = \frac{S}{2 \pi} - r^2 \)[/tex] with the provided options, we notice that none of the options match directly. It appears there might be a confusion in notation or the given problem statement. Let's recheck carefully.
Given the options:
1. [tex]\( \frac{S}{2 \pi r} - r = h \)[/tex]
2. [tex]\( \frac{S - r}{2 \pi r} = h \)[/tex]
3. [tex]\( S - \frac{r}{2 \pi} = h \)[/tex]
4. [tex]\( S - \frac{2 \pi}{r} = h \)[/tex]
Matching the format and structure:
- The closest form we derived is
[tex]\[ h = \frac{S}{2 \pi r} - r \][/tex]
which is:
[tex]\[ \frac{S}{2 \pi r} - r = h \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{\frac{S}{2 \pi r} - r = h} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.