Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Ask your questions and receive precise answers from experienced professionals across different disciplines. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine whether the point [tex]\( n = 100 \)[/tex] falls into the loss, profit, or break-even section, we need to evaluate both the cost function and the revenue function at [tex]\( n = 100 \)[/tex] and then compare the values.
1. Cost Function Evaluation:
The cost function [tex]\( C \)[/tex] is given by:
[tex]\[ C = 20n + 500 \][/tex]
Substituting [tex]\( n = 100 \)[/tex] into the cost function:
[tex]\[ C = 20 \times 100 + 500 = 2000 + 500 = 2500 \][/tex]
2. Revenue Function Evaluation:
The revenue function [tex]\( r \)[/tex] is given by:
[tex]\[ r = 25n \][/tex]
Substituting [tex]\( n = 100 \)[/tex] into the revenue function:
[tex]\[ r = 25 \times 100 = 2500 \][/tex]
3. Comparison:
Now, we compare the cost [tex]\( C \)[/tex] and the revenue [tex]\( r \)[/tex]:
[tex]\[ C = 2500, \quad r = 2500 \][/tex]
Since [tex]\( C = r \)[/tex], the bookstore is neither making a profit nor incurring a loss; they are at the break-even point.
Therefore, at [tex]\( n = 100 \)[/tex], the point would be in the:
A. Break-even section
1. Cost Function Evaluation:
The cost function [tex]\( C \)[/tex] is given by:
[tex]\[ C = 20n + 500 \][/tex]
Substituting [tex]\( n = 100 \)[/tex] into the cost function:
[tex]\[ C = 20 \times 100 + 500 = 2000 + 500 = 2500 \][/tex]
2. Revenue Function Evaluation:
The revenue function [tex]\( r \)[/tex] is given by:
[tex]\[ r = 25n \][/tex]
Substituting [tex]\( n = 100 \)[/tex] into the revenue function:
[tex]\[ r = 25 \times 100 = 2500 \][/tex]
3. Comparison:
Now, we compare the cost [tex]\( C \)[/tex] and the revenue [tex]\( r \)[/tex]:
[tex]\[ C = 2500, \quad r = 2500 \][/tex]
Since [tex]\( C = r \)[/tex], the bookstore is neither making a profit nor incurring a loss; they are at the break-even point.
Therefore, at [tex]\( n = 100 \)[/tex], the point would be in the:
A. Break-even section
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.