At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine which expression is a prime polynomial, we need to understand what makes a polynomial "prime". A prime polynomial over the integers is one that cannot be factored into the product of two non-constant polynomials with integer coefficients.
Let's analyze each of the given options step-by-step to see if they can be factored:
### Option A: [tex]\(x^3 - 1\)[/tex]
The polynomial [tex]\(x^3 - 1\)[/tex] can be factored using the difference of cubes formula:
[tex]\[ x^3 - 1 = (x - 1)(x^2 + x + 1) \][/tex]
So, [tex]\(x^3 - 1\)[/tex] is not a prime polynomial because it can be factored.
### Option B: [tex]\(x^2 + 1\)[/tex]
To test if [tex]\(x^2 + 1\)[/tex] can be factored over the integers, let's see if there are any integer solutions to the equation:
[tex]\[ x^2 + 1 = 0 \implies x^2 = -1 \][/tex]
Since there are no real roots to this equation (as the square of a real number cannot be negative), [tex]\(x^2 + 1\)[/tex] cannot be factored further over the integers. Hence, [tex]\(x^2 + 1\)[/tex] is a prime polynomial.
### Option C: [tex]\(x^3 + 1\)[/tex]
The polynomial [tex]\(x^3 + 1\)[/tex] can be factored using the sum of cubes formula:
[tex]\[ x^3 + 1 = (x + 1)(x^2 - x + 1) \][/tex]
So, [tex]\(x^3 + 1\)[/tex] is not a prime polynomial because it can be factored.
### Option D: [tex]\(x^2 - 1\)[/tex]
The polynomial [tex]\(x^2 - 1\)[/tex] can be factored using the difference of squares formula:
[tex]\[ x^2 - 1 = (x - 1)(x + 1) \][/tex]
So, [tex]\(x^2 - 1\)[/tex] is not a prime polynomial because it can be factored.
Based on the analysis above, the only prime polynomial among the given options is:
B. [tex]\(x^2 + 1\)[/tex]
Let's analyze each of the given options step-by-step to see if they can be factored:
### Option A: [tex]\(x^3 - 1\)[/tex]
The polynomial [tex]\(x^3 - 1\)[/tex] can be factored using the difference of cubes formula:
[tex]\[ x^3 - 1 = (x - 1)(x^2 + x + 1) \][/tex]
So, [tex]\(x^3 - 1\)[/tex] is not a prime polynomial because it can be factored.
### Option B: [tex]\(x^2 + 1\)[/tex]
To test if [tex]\(x^2 + 1\)[/tex] can be factored over the integers, let's see if there are any integer solutions to the equation:
[tex]\[ x^2 + 1 = 0 \implies x^2 = -1 \][/tex]
Since there are no real roots to this equation (as the square of a real number cannot be negative), [tex]\(x^2 + 1\)[/tex] cannot be factored further over the integers. Hence, [tex]\(x^2 + 1\)[/tex] is a prime polynomial.
### Option C: [tex]\(x^3 + 1\)[/tex]
The polynomial [tex]\(x^3 + 1\)[/tex] can be factored using the sum of cubes formula:
[tex]\[ x^3 + 1 = (x + 1)(x^2 - x + 1) \][/tex]
So, [tex]\(x^3 + 1\)[/tex] is not a prime polynomial because it can be factored.
### Option D: [tex]\(x^2 - 1\)[/tex]
The polynomial [tex]\(x^2 - 1\)[/tex] can be factored using the difference of squares formula:
[tex]\[ x^2 - 1 = (x - 1)(x + 1) \][/tex]
So, [tex]\(x^2 - 1\)[/tex] is not a prime polynomial because it can be factored.
Based on the analysis above, the only prime polynomial among the given options is:
B. [tex]\(x^2 + 1\)[/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.