Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the length of an arc intercepted by a central angle in a circle, we use the formula for arc length:
[tex]\[ \text{Arc Length} = \text{Radius} \times \text{Central Angle in Radians} \][/tex]
Given:
- Radius ([tex]\(r\)[/tex]) = 6 feet
- Central Angle ([tex]\(\theta\)[/tex]) = [tex]\(\frac{\pi}{3}\)[/tex] radians
- Use [tex]\(\pi \approx 3.14\)[/tex]
First, we substitute the given values into the formula:
[tex]\[ \text{Arc Length} = 6 \times \left(\frac{3.14}{3}\right) \][/tex]
Next, simplify the expression inside the parentheses:
[tex]\[ \frac{3.14}{3} \approx 1.0466667 \][/tex]
Now, multiply the radius by the result:
[tex]\[ \text{Arc Length} = 6 \times 1.0466667 \approx 6.279999999999999 \][/tex]
After finding the arc length, we round it to the nearest tenth:
[tex]\[ 6.279999999999999 \approx 6.3 \][/tex]
Therefore, the arc length intersected by a central angle of [tex]\(\frac{\pi}{3}\)[/tex] radians in a circle with a radius of 6 feet, rounded to the nearest tenth, is:
[tex]\[ \boxed{6.3 \text{ ft}} \][/tex]
[tex]\[ \text{Arc Length} = \text{Radius} \times \text{Central Angle in Radians} \][/tex]
Given:
- Radius ([tex]\(r\)[/tex]) = 6 feet
- Central Angle ([tex]\(\theta\)[/tex]) = [tex]\(\frac{\pi}{3}\)[/tex] radians
- Use [tex]\(\pi \approx 3.14\)[/tex]
First, we substitute the given values into the formula:
[tex]\[ \text{Arc Length} = 6 \times \left(\frac{3.14}{3}\right) \][/tex]
Next, simplify the expression inside the parentheses:
[tex]\[ \frac{3.14}{3} \approx 1.0466667 \][/tex]
Now, multiply the radius by the result:
[tex]\[ \text{Arc Length} = 6 \times 1.0466667 \approx 6.279999999999999 \][/tex]
After finding the arc length, we round it to the nearest tenth:
[tex]\[ 6.279999999999999 \approx 6.3 \][/tex]
Therefore, the arc length intersected by a central angle of [tex]\(\frac{\pi}{3}\)[/tex] radians in a circle with a radius of 6 feet, rounded to the nearest tenth, is:
[tex]\[ \boxed{6.3 \text{ ft}} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.