Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the values of [tex]\( x \)[/tex] for which the given rational expression
[tex]\[ \frac{x+8}{x^2 - 2x - 24} \][/tex]
is undefined, we need to examine the denominator, [tex]\( x^2 - 2x - 24 \)[/tex]. The rational expression is undefined when the denominator is equal to zero, because division by zero is undefined.
Step-by-step, we solve for [tex]\( x \)[/tex] in the equation:
[tex]\[ x^2 - 2x - 24 = 0 \][/tex]
This is a quadratic equation, which we can solve by factoring. To factor [tex]\( x^2 - 2x - 24 \)[/tex], we look for two numbers that multiply to [tex]\(-24\)[/tex] and add to [tex]\(-2\)[/tex]. The numbers that fit these criteria are [tex]\( -6 \)[/tex] and [tex]\( 4 \)[/tex].
Thus, we can factor the quadratic as follows:
[tex]\[ x^2 - 2x - 24 = (x - 6)(x + 4) = 0 \][/tex]
Next, we set each factor equal to zero to solve for [tex]\( x \)[/tex]:
[tex]\[ x - 6 = 0 \quad \text{or} \quad x + 4 = 0 \][/tex]
[tex]\[ x = 6 \quad \text{or} \quad x = -4 \][/tex]
Therefore, the rational expression [tex]\(\frac{x+8}{x^2 - 2x - 24}\)[/tex] is undefined for [tex]\( x = 6 \)[/tex] and [tex]\( x = -4 \)[/tex].
So, the values of [tex]\( x \)[/tex] that make the expression undefined are:
[tex]\[ \boxed{6 \text{ and } -4} \][/tex]
From the provided options, we should select options:
A. 6
C. -4
[tex]\[ \frac{x+8}{x^2 - 2x - 24} \][/tex]
is undefined, we need to examine the denominator, [tex]\( x^2 - 2x - 24 \)[/tex]. The rational expression is undefined when the denominator is equal to zero, because division by zero is undefined.
Step-by-step, we solve for [tex]\( x \)[/tex] in the equation:
[tex]\[ x^2 - 2x - 24 = 0 \][/tex]
This is a quadratic equation, which we can solve by factoring. To factor [tex]\( x^2 - 2x - 24 \)[/tex], we look for two numbers that multiply to [tex]\(-24\)[/tex] and add to [tex]\(-2\)[/tex]. The numbers that fit these criteria are [tex]\( -6 \)[/tex] and [tex]\( 4 \)[/tex].
Thus, we can factor the quadratic as follows:
[tex]\[ x^2 - 2x - 24 = (x - 6)(x + 4) = 0 \][/tex]
Next, we set each factor equal to zero to solve for [tex]\( x \)[/tex]:
[tex]\[ x - 6 = 0 \quad \text{or} \quad x + 4 = 0 \][/tex]
[tex]\[ x = 6 \quad \text{or} \quad x = -4 \][/tex]
Therefore, the rational expression [tex]\(\frac{x+8}{x^2 - 2x - 24}\)[/tex] is undefined for [tex]\( x = 6 \)[/tex] and [tex]\( x = -4 \)[/tex].
So, the values of [tex]\( x \)[/tex] that make the expression undefined are:
[tex]\[ \boxed{6 \text{ and } -4} \][/tex]
From the provided options, we should select options:
A. 6
C. -4
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.