Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the minimum unit cost for manufacturing airplane engines, we need to minimize the cost function [tex]\( C(x) \)[/tex], defined as follows:
[tex]\[ C(x) = 1.1x^2 - 638x + 106,380 \][/tex]
Here's a detailed step-by-step solution to find the minimum unit cost:
1. Identify the function to minimize:
We are given:
[tex]\[ C(x) = 1.1x^2 - 638x + 106,380 \][/tex]
2. Find the critical points:
To find the minimum, we first take the derivative of [tex]\( C(x) \)[/tex] with respect to [tex]\( x \)[/tex]. This gives us:
[tex]\[ \frac{dC}{dx} = \frac{d}{dx}(1.1x^2 - 638x + 106,380) \][/tex]
[tex]\[ \frac{dC}{dx} = 2.2x - 638 \][/tex]
3. Set the derivative equal to zero to find the critical points:
[tex]\[ 2.2x - 638 = 0 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ 2.2x = 638 \][/tex]
[tex]\[ x = \frac{638}{2.2} \][/tex]
[tex]\[ x = 290 \][/tex]
4. Evaluate the cost function at the critical point:
We substitute [tex]\( x = 290 \)[/tex] back into the original cost function [tex]\( C(x) \)[/tex]:
[tex]\[ C(290) = 1.1(290)^2 - 638(290) + 106,380 \][/tex]
5. Calculate the minimum unit cost:
[tex]\[ C(290) = 1.1 \times 84100 - 638 \times 290 + 106,380 \][/tex]
[tex]\[ C(290) = 92,510 - 185,020 + 106,380 \][/tex]
[tex]\[ C(290) = 13870 \][/tex]
Therefore, the minimum unit cost is:
[tex]\[ \boxed{13870} \][/tex]
[tex]\[ C(x) = 1.1x^2 - 638x + 106,380 \][/tex]
Here's a detailed step-by-step solution to find the minimum unit cost:
1. Identify the function to minimize:
We are given:
[tex]\[ C(x) = 1.1x^2 - 638x + 106,380 \][/tex]
2. Find the critical points:
To find the minimum, we first take the derivative of [tex]\( C(x) \)[/tex] with respect to [tex]\( x \)[/tex]. This gives us:
[tex]\[ \frac{dC}{dx} = \frac{d}{dx}(1.1x^2 - 638x + 106,380) \][/tex]
[tex]\[ \frac{dC}{dx} = 2.2x - 638 \][/tex]
3. Set the derivative equal to zero to find the critical points:
[tex]\[ 2.2x - 638 = 0 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ 2.2x = 638 \][/tex]
[tex]\[ x = \frac{638}{2.2} \][/tex]
[tex]\[ x = 290 \][/tex]
4. Evaluate the cost function at the critical point:
We substitute [tex]\( x = 290 \)[/tex] back into the original cost function [tex]\( C(x) \)[/tex]:
[tex]\[ C(290) = 1.1(290)^2 - 638(290) + 106,380 \][/tex]
5. Calculate the minimum unit cost:
[tex]\[ C(290) = 1.1 \times 84100 - 638 \times 290 + 106,380 \][/tex]
[tex]\[ C(290) = 92,510 - 185,020 + 106,380 \][/tex]
[tex]\[ C(290) = 13870 \][/tex]
Therefore, the minimum unit cost is:
[tex]\[ \boxed{13870} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.