Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To find the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] such that the midpoint between [tex]\((x, 1)\)[/tex] and [tex]\((-3, y)\)[/tex] is [tex]\((2, 1)\)[/tex], we can use the midpoint formula. The midpoint formula for two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]
Given the points [tex]\((x, 1)\)[/tex] and [tex]\((-3, y)\)[/tex], and knowing that their midpoint is [tex]\((2, 1)\)[/tex], we can set up two equations by comparing the coordinates of the midpoint.
### Step-by-Step Solution
1. Determine the x-coordinate of the midpoint:
The x-coordinate of the midpoint is found by averaging the x-coordinates of the given points:
[tex]\[ \frac{x + (-3)}{2} = 2 \][/tex]
Simplify the equation:
[tex]\[ \frac{x - 3}{2} = 2 \][/tex]
Multiply both sides by 2 to clear the fraction:
[tex]\[ x - 3 = 4 \][/tex]
Add 3 to both sides to solve for [tex]\( x \)[/tex]:
[tex]\[ x = 7 \][/tex]
2. Determine the y-coordinate of the midpoint:
The y-coordinate of the midpoint is found by averaging the y-coordinates of the given points:
[tex]\[ \frac{1 + y}{2} = 1 \][/tex]
Simplify the equation:
[tex]\[ \frac{1 + y}{2} = 1 \][/tex]
Multiply both sides by 2 to clear the fraction:
[tex]\[ 1 + y = 2 \][/tex]
Subtract 1 from both sides to solve for [tex]\( y \)[/tex]:
[tex]\[ y = 1 \][/tex]
### Conclusion
The values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] that satisfy the condition that the midpoint between the points [tex]\((x, 1)\)[/tex] and [tex]\((-3, y)\)[/tex] is [tex]\((2, 1)\)[/tex] are:
[tex]\[ x = 7 \quad \text{and} \quad y = 1 \][/tex]
[tex]\[ \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]
Given the points [tex]\((x, 1)\)[/tex] and [tex]\((-3, y)\)[/tex], and knowing that their midpoint is [tex]\((2, 1)\)[/tex], we can set up two equations by comparing the coordinates of the midpoint.
### Step-by-Step Solution
1. Determine the x-coordinate of the midpoint:
The x-coordinate of the midpoint is found by averaging the x-coordinates of the given points:
[tex]\[ \frac{x + (-3)}{2} = 2 \][/tex]
Simplify the equation:
[tex]\[ \frac{x - 3}{2} = 2 \][/tex]
Multiply both sides by 2 to clear the fraction:
[tex]\[ x - 3 = 4 \][/tex]
Add 3 to both sides to solve for [tex]\( x \)[/tex]:
[tex]\[ x = 7 \][/tex]
2. Determine the y-coordinate of the midpoint:
The y-coordinate of the midpoint is found by averaging the y-coordinates of the given points:
[tex]\[ \frac{1 + y}{2} = 1 \][/tex]
Simplify the equation:
[tex]\[ \frac{1 + y}{2} = 1 \][/tex]
Multiply both sides by 2 to clear the fraction:
[tex]\[ 1 + y = 2 \][/tex]
Subtract 1 from both sides to solve for [tex]\( y \)[/tex]:
[tex]\[ y = 1 \][/tex]
### Conclusion
The values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] that satisfy the condition that the midpoint between the points [tex]\((x, 1)\)[/tex] and [tex]\((-3, y)\)[/tex] is [tex]\((2, 1)\)[/tex] are:
[tex]\[ x = 7 \quad \text{and} \quad y = 1 \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.