Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To identify the location of the axis of symmetry for the function [tex]\( f(x) = 3(x + 5) - 4 \)[/tex], we will carefully analyze the components of the function.
First, let's rewrite the function in a more familiar quadratic form. We notice that the function given is:
[tex]\[ f(x) = 3(x + 5) - 4. \][/tex]
However, it seems there might be a slight notation issue since [tex]\( f(x) = 3(x + 5) \)[/tex] might need further clarification. Let's correct it and assume it should reflect a standard quadratic form [tex]\( f(x) = a(x - h)^2 + k \)[/tex].
Considering the standard form [tex]\( f(x) = 3(x + 5)^2 - 4 \)[/tex], we proceed with identifying the vertex form:
1. The term inside the parenthesis [tex]\( (x + 5) \)[/tex] indicates the horizontal shift. In vertex form [tex]\( f(x) = a(x - h)^2 + k \)[/tex], this would normally look like [tex]\( (x - (-5)) \)[/tex].
2. This horizontal shift indicates a shift to the left by 5 units.
3. The vertex form of a quadratic function is given by [tex]\( (h, k) \)[/tex], where [tex]\( x = h \)[/tex].
4. Here, [tex]\( h \)[/tex] is [tex]\(-5\)[/tex] and [tex]\( k \)[/tex] is [tex]\(-4\)[/tex] based on the vertex form.
The axis of symmetry for a quadratic function in the form [tex]\( f(x) = a(x - h)^2 + k \)[/tex] is given by the line [tex]\( x = h \)[/tex].
Therefore, for this function, [tex]\( h = -5 \)[/tex].
Thus, the axis of symmetry is:
[tex]\[ x = -5. \][/tex]
So, the correct answer is [tex]\( x = -5 \)[/tex].
First, let's rewrite the function in a more familiar quadratic form. We notice that the function given is:
[tex]\[ f(x) = 3(x + 5) - 4. \][/tex]
However, it seems there might be a slight notation issue since [tex]\( f(x) = 3(x + 5) \)[/tex] might need further clarification. Let's correct it and assume it should reflect a standard quadratic form [tex]\( f(x) = a(x - h)^2 + k \)[/tex].
Considering the standard form [tex]\( f(x) = 3(x + 5)^2 - 4 \)[/tex], we proceed with identifying the vertex form:
1. The term inside the parenthesis [tex]\( (x + 5) \)[/tex] indicates the horizontal shift. In vertex form [tex]\( f(x) = a(x - h)^2 + k \)[/tex], this would normally look like [tex]\( (x - (-5)) \)[/tex].
2. This horizontal shift indicates a shift to the left by 5 units.
3. The vertex form of a quadratic function is given by [tex]\( (h, k) \)[/tex], where [tex]\( x = h \)[/tex].
4. Here, [tex]\( h \)[/tex] is [tex]\(-5\)[/tex] and [tex]\( k \)[/tex] is [tex]\(-4\)[/tex] based on the vertex form.
The axis of symmetry for a quadratic function in the form [tex]\( f(x) = a(x - h)^2 + k \)[/tex] is given by the line [tex]\( x = h \)[/tex].
Therefore, for this function, [tex]\( h = -5 \)[/tex].
Thus, the axis of symmetry is:
[tex]\[ x = -5. \][/tex]
So, the correct answer is [tex]\( x = -5 \)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.