At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve the quadratic equation [tex]\(9x^2 + 24x + 16 = 0\)[/tex] by factoring, let's follow these steps:
1. Write the equation in standard form:
The equation is already in standard form, which is [tex]\(ax^2 + bx + c = 0\)[/tex].
2. Identify the coefficients:
Here, [tex]\(a = 9\)[/tex], [tex]\(b = 24\)[/tex], and [tex]\(c = 16\)[/tex].
3. Factor the quadratic expression:
We need to express [tex]\(9x^2 + 24x + 16\)[/tex] as a product of two binomials of the form [tex]\((mx + n)(px + q)\)[/tex].
Our goal is to find two numbers that multiply to [tex]\(a \cdot c = 9 \cdot 16 = 144\)[/tex] and add up to [tex]\(b = 24\)[/tex].
Notice that the quadratic can be factored as:
[tex]\[ 9x^2 + 24x + 16 = (3x + 4)(3x + 4) \][/tex]
Explanation:
- [tex]\(3x \cdot 3x = 9x^2\)[/tex]
- [tex]\(3x \cdot 4 = 12x\)[/tex]
- [tex]\(4 \cdot 3x = 12x\)[/tex]
- [tex]\(4 \cdot 4 = 16\)[/tex]
When you combine the middle terms: [tex]\(12x + 12x = 24x\)[/tex].
So, [tex]\(9x^2 + 24x + 16 = (3x + 4)^2\)[/tex].
4. Set each factor to zero and solve for [tex]\(x\)[/tex]:
Since the quadratic can be written as [tex]\((3x + 4)^2 = 0\)[/tex], we set the inside of the square to zero:
[tex]\[ 3x + 4 = 0 \][/tex]
Solving for [tex]\(x\)[/tex]:
[tex]\[ 3x + 4 = 0 \implies 3x = -4 \implies x = -\frac{4}{3} \][/tex]
5. Write the solution:
The solution to the quadratic equation [tex]\(9x^2 + 24x + 16 = 0\)[/tex] is:
[tex]\[ x = -\frac{4}{3} \][/tex]
Therefore, the correct choice from the given options is [tex]\(x = -4 / 3\)[/tex]. The answer is:
```
[tex]\[ [-4/3] \][/tex]
```
1. Write the equation in standard form:
The equation is already in standard form, which is [tex]\(ax^2 + bx + c = 0\)[/tex].
2. Identify the coefficients:
Here, [tex]\(a = 9\)[/tex], [tex]\(b = 24\)[/tex], and [tex]\(c = 16\)[/tex].
3. Factor the quadratic expression:
We need to express [tex]\(9x^2 + 24x + 16\)[/tex] as a product of two binomials of the form [tex]\((mx + n)(px + q)\)[/tex].
Our goal is to find two numbers that multiply to [tex]\(a \cdot c = 9 \cdot 16 = 144\)[/tex] and add up to [tex]\(b = 24\)[/tex].
Notice that the quadratic can be factored as:
[tex]\[ 9x^2 + 24x + 16 = (3x + 4)(3x + 4) \][/tex]
Explanation:
- [tex]\(3x \cdot 3x = 9x^2\)[/tex]
- [tex]\(3x \cdot 4 = 12x\)[/tex]
- [tex]\(4 \cdot 3x = 12x\)[/tex]
- [tex]\(4 \cdot 4 = 16\)[/tex]
When you combine the middle terms: [tex]\(12x + 12x = 24x\)[/tex].
So, [tex]\(9x^2 + 24x + 16 = (3x + 4)^2\)[/tex].
4. Set each factor to zero and solve for [tex]\(x\)[/tex]:
Since the quadratic can be written as [tex]\((3x + 4)^2 = 0\)[/tex], we set the inside of the square to zero:
[tex]\[ 3x + 4 = 0 \][/tex]
Solving for [tex]\(x\)[/tex]:
[tex]\[ 3x + 4 = 0 \implies 3x = -4 \implies x = -\frac{4}{3} \][/tex]
5. Write the solution:
The solution to the quadratic equation [tex]\(9x^2 + 24x + 16 = 0\)[/tex] is:
[tex]\[ x = -\frac{4}{3} \][/tex]
Therefore, the correct choice from the given options is [tex]\(x = -4 / 3\)[/tex]. The answer is:
```
[tex]\[ [-4/3] \][/tex]
```
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.