Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine why [tex]\(\cos \frac{2 \pi}{3} \neq \cos \frac{5 \pi}{3}\)[/tex], let's analyze the given angles and their respective cosine values step-by-step.
1. Convert the Angles to Decimal Degrees:
- [tex]\(\frac{2 \pi}{3}\)[/tex] radians is equivalent to [tex]\(120^\circ\)[/tex].
- [tex]\(\frac{5 \pi}{3}\)[/tex] radians is equivalent to [tex]\(300^\circ\)[/tex].
2. Determine the Quadrants:
- An angle of [tex]\(120^\circ\)[/tex] (or [tex]\(\frac{2 \pi}{3}\)[/tex]) is located in the second quadrant.
- An angle of [tex]\(300^\circ\)[/tex] (or [tex]\(\frac{5 \pi}{3}\)[/tex]) is located in the fourth quadrant.
3. Characteristics of Cosine in Different Quadrants:
- In the second quadrant, the cosine of an angle is negative.
- In the fourth quadrant, the cosine of an angle is positive.
4. Calculate or Use Known Values of Cosines:
- [tex]\(\cos \frac{2\pi}{3} \approx -0.5\)[/tex].
- [tex]\(\cos \frac{5\pi}{3} \approx 0.5\)[/tex].
5. Compare the Cosine Values:
- These values confirm that [tex]\(\cos \frac{2\pi}{3}\)[/tex] is negative and [tex]\(\cos \frac{5\pi}{3}\)[/tex] is positive.
Now, given the information and the properties of cosine in various quadrants:
- The correct explanation is: Cosine is negative in the second quadrant and positive in the fourth quadrant.
The specific cosine values are:
- [tex]\(\cos \frac{2 \pi}{3} \approx -0.5\)[/tex].
- [tex]\(\cos \frac{5 \pi}{3} \approx 0.5\)[/tex].
Thus, through the characteristics of the cosine function in different quadrants, we see that [tex]\(\cos \frac{2 \pi}{3} \neq \cos \frac{5 \pi}{3}\)[/tex] because cosine takes different signs in the second and fourth quadrants.
1. Convert the Angles to Decimal Degrees:
- [tex]\(\frac{2 \pi}{3}\)[/tex] radians is equivalent to [tex]\(120^\circ\)[/tex].
- [tex]\(\frac{5 \pi}{3}\)[/tex] radians is equivalent to [tex]\(300^\circ\)[/tex].
2. Determine the Quadrants:
- An angle of [tex]\(120^\circ\)[/tex] (or [tex]\(\frac{2 \pi}{3}\)[/tex]) is located in the second quadrant.
- An angle of [tex]\(300^\circ\)[/tex] (or [tex]\(\frac{5 \pi}{3}\)[/tex]) is located in the fourth quadrant.
3. Characteristics of Cosine in Different Quadrants:
- In the second quadrant, the cosine of an angle is negative.
- In the fourth quadrant, the cosine of an angle is positive.
4. Calculate or Use Known Values of Cosines:
- [tex]\(\cos \frac{2\pi}{3} \approx -0.5\)[/tex].
- [tex]\(\cos \frac{5\pi}{3} \approx 0.5\)[/tex].
5. Compare the Cosine Values:
- These values confirm that [tex]\(\cos \frac{2\pi}{3}\)[/tex] is negative and [tex]\(\cos \frac{5\pi}{3}\)[/tex] is positive.
Now, given the information and the properties of cosine in various quadrants:
- The correct explanation is: Cosine is negative in the second quadrant and positive in the fourth quadrant.
The specific cosine values are:
- [tex]\(\cos \frac{2 \pi}{3} \approx -0.5\)[/tex].
- [tex]\(\cos \frac{5 \pi}{3} \approx 0.5\)[/tex].
Thus, through the characteristics of the cosine function in different quadrants, we see that [tex]\(\cos \frac{2 \pi}{3} \neq \cos \frac{5 \pi}{3}\)[/tex] because cosine takes different signs in the second and fourth quadrants.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.