At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Let's solve the problem discussing each step carefully.
1. Understanding the problem:
- We have a radioactive substance, cesium-137, with a half-life of 30 years.
- The amount of the substance left after a certain period can be calculated using the exponential decay formula:
[tex]\[ A(t) = 458 \left(\frac{1}{2}\right)^{\frac{t}{30}} \][/tex]
- We need to find two things:
1. Initial amount in the sample (at t = 0 years).
2. The amount remaining after 80 years.
2. Finding the Initial Amount:
- The initial amount of cesium-137 is represented by [tex]\( A(0) \)[/tex]. Substitute [tex]\( t = 0 \)[/tex] into the equation:
[tex]\[ A(0) = 458 \left(\frac{1}{2}\right)^{\frac{0}{30}} = 458 \left(\frac{1}{2}\right)^0 \][/tex]
- Any number raised to the power of 0 is 1:
[tex]\[ A(0) = 458 \times 1 = 458 \text{ grams} \][/tex]
- Therefore, the initial amount of cesium-137 in the sample is 458 grams.
3. Finding the Amount After 80 Years:
- To find the amount of cesium-137 remaining after 80 years, we need to evaluate [tex]\( A(80) \)[/tex]. Substitute [tex]\( t = 80 \)[/tex] into the equation:
[tex]\[ A(80) = 458 \left(\frac{1}{2}\right)^{\frac{80}{30}} \][/tex]
- First, calculate the exponent:
[tex]\[ \frac{80}{30} \approx 2.6667 \][/tex]
- Then, compute the powers of 0.5:
[tex]\[ A(80) = 458 \left(\frac{1}{2}\right)^{2.6667} \][/tex]
- Taking the power of [tex]\(\left(\frac{1}{2}\right)^{2.6667}\)[/tex] gives us a value which, when multiplied by 458 grams, gives an approximate value:
[tex]\[ A(80) \approx 72 \text{ grams} \][/tex]
- Therefore, the amount of cesium-137 remaining after 80 years is approximately 72 grams.
The results are:
- Initial amount: 458 grams
- Amount after 80 years: 72 grams
These values are rounded to the nearest gram as requested.
1. Understanding the problem:
- We have a radioactive substance, cesium-137, with a half-life of 30 years.
- The amount of the substance left after a certain period can be calculated using the exponential decay formula:
[tex]\[ A(t) = 458 \left(\frac{1}{2}\right)^{\frac{t}{30}} \][/tex]
- We need to find two things:
1. Initial amount in the sample (at t = 0 years).
2. The amount remaining after 80 years.
2. Finding the Initial Amount:
- The initial amount of cesium-137 is represented by [tex]\( A(0) \)[/tex]. Substitute [tex]\( t = 0 \)[/tex] into the equation:
[tex]\[ A(0) = 458 \left(\frac{1}{2}\right)^{\frac{0}{30}} = 458 \left(\frac{1}{2}\right)^0 \][/tex]
- Any number raised to the power of 0 is 1:
[tex]\[ A(0) = 458 \times 1 = 458 \text{ grams} \][/tex]
- Therefore, the initial amount of cesium-137 in the sample is 458 grams.
3. Finding the Amount After 80 Years:
- To find the amount of cesium-137 remaining after 80 years, we need to evaluate [tex]\( A(80) \)[/tex]. Substitute [tex]\( t = 80 \)[/tex] into the equation:
[tex]\[ A(80) = 458 \left(\frac{1}{2}\right)^{\frac{80}{30}} \][/tex]
- First, calculate the exponent:
[tex]\[ \frac{80}{30} \approx 2.6667 \][/tex]
- Then, compute the powers of 0.5:
[tex]\[ A(80) = 458 \left(\frac{1}{2}\right)^{2.6667} \][/tex]
- Taking the power of [tex]\(\left(\frac{1}{2}\right)^{2.6667}\)[/tex] gives us a value which, when multiplied by 458 grams, gives an approximate value:
[tex]\[ A(80) \approx 72 \text{ grams} \][/tex]
- Therefore, the amount of cesium-137 remaining after 80 years is approximately 72 grams.
The results are:
- Initial amount: 458 grams
- Amount after 80 years: 72 grams
These values are rounded to the nearest gram as requested.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.