Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the domain of the given radical function [tex]\(f(x) = \sqrt{x + 1} - 3\)[/tex], we need to ensure that the expression inside the square root is non-negative because the square root of a negative number is not defined in the set of real numbers.
The expression inside the square root is [tex]\(x + 1\)[/tex]. We need to solve for when this expression is non-negative:
[tex]\[ x + 1 \geq 0 \][/tex]
Subtract 1 from both sides to isolate [tex]\(x\)[/tex]:
[tex]\[ x \geq -1 \][/tex]
Hence, the domain of the function [tex]\(f(x) = \sqrt{x + 1} - 3\)[/tex] includes all [tex]\(x\)[/tex] values that are greater than or equal to [tex]\(-1\)[/tex]. We can express this domain in interval notation as:
[tex]\[ [-1, \infty) \][/tex]
Therefore, the correct answer is:
[tex]\[ \text{D. } [-1, \infty) \][/tex]
The expression inside the square root is [tex]\(x + 1\)[/tex]. We need to solve for when this expression is non-negative:
[tex]\[ x + 1 \geq 0 \][/tex]
Subtract 1 from both sides to isolate [tex]\(x\)[/tex]:
[tex]\[ x \geq -1 \][/tex]
Hence, the domain of the function [tex]\(f(x) = \sqrt{x + 1} - 3\)[/tex] includes all [tex]\(x\)[/tex] values that are greater than or equal to [tex]\(-1\)[/tex]. We can express this domain in interval notation as:
[tex]\[ [-1, \infty) \][/tex]
Therefore, the correct answer is:
[tex]\[ \text{D. } [-1, \infty) \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.