Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure! Let's derive the equation of the line given the slope and the y-intercept step-by-step.
1. Identify the components of the slope-intercept form:
The general form of the equation of a line in slope-intercept form is:
[tex]\[ y = mx + b \][/tex]
where:
- [tex]\( m \)[/tex] is the slope of the line.
- [tex]\( b \)[/tex] is the y-intercept (the point where the line crosses the y-axis).
2. Substitute the given values:
- We are given the slope [tex]\( \frac{2}{5} \)[/tex].
- We are given the y-intercept [tex]\( 5 \)[/tex].
3. Write the equation:
Substitute [tex]\( m = \frac{2}{5} \)[/tex] and [tex]\( b = 5 \)[/tex] into the slope-intercept form:
[tex]\[ y = \frac{2}{5}x + 5 \][/tex]
So, the equation of the line is:
[tex]\[ y = 0.4x + 5 \][/tex]
Next, let's talk about how to graph this line:
- Step 1: Plot the y-intercept [tex]\( (0, 5) \)[/tex]. This is the point where the line crosses the y-axis.
- Step 2: Use the slope to determine another point on the line. The slope [tex]\( \frac{2}{5} \)[/tex] means that for every 5 units you move to the right along the x-axis, you move 2 units up along the y-axis.
Starting from the y-intercept (0, 5):
- Move 5 units to the right: [tex]\( (0 + 5, 5) = (5, 5) \)[/tex]
- Move 2 units up: [tex]\( (5, 5 + 2) = (5, 7) \)[/tex]
So, another point on the line is [tex]\( (5, 7) \)[/tex].
- Step 3: Draw the line through the points [tex]\( (0, 5) \)[/tex] and [tex]\( (5, 7) \)[/tex].
This will give you the graph of the line corresponding to the equation [tex]\( y = 0.4x + 5 \)[/tex].
1. Identify the components of the slope-intercept form:
The general form of the equation of a line in slope-intercept form is:
[tex]\[ y = mx + b \][/tex]
where:
- [tex]\( m \)[/tex] is the slope of the line.
- [tex]\( b \)[/tex] is the y-intercept (the point where the line crosses the y-axis).
2. Substitute the given values:
- We are given the slope [tex]\( \frac{2}{5} \)[/tex].
- We are given the y-intercept [tex]\( 5 \)[/tex].
3. Write the equation:
Substitute [tex]\( m = \frac{2}{5} \)[/tex] and [tex]\( b = 5 \)[/tex] into the slope-intercept form:
[tex]\[ y = \frac{2}{5}x + 5 \][/tex]
So, the equation of the line is:
[tex]\[ y = 0.4x + 5 \][/tex]
Next, let's talk about how to graph this line:
- Step 1: Plot the y-intercept [tex]\( (0, 5) \)[/tex]. This is the point where the line crosses the y-axis.
- Step 2: Use the slope to determine another point on the line. The slope [tex]\( \frac{2}{5} \)[/tex] means that for every 5 units you move to the right along the x-axis, you move 2 units up along the y-axis.
Starting from the y-intercept (0, 5):
- Move 5 units to the right: [tex]\( (0 + 5, 5) = (5, 5) \)[/tex]
- Move 2 units up: [tex]\( (5, 5 + 2) = (5, 7) \)[/tex]
So, another point on the line is [tex]\( (5, 7) \)[/tex].
- Step 3: Draw the line through the points [tex]\( (0, 5) \)[/tex] and [tex]\( (5, 7) \)[/tex].
This will give you the graph of the line corresponding to the equation [tex]\( y = 0.4x + 5 \)[/tex].
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.