Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the area of the parallelogram with one vertex at [tex]\( P \)[/tex] and sides formed by the vectors [tex]\( \overrightarrow{PQ} \)[/tex] and [tex]\( \overrightarrow{PR} \)[/tex], we can follow these steps:
1. Find the vectors [tex]\( \overrightarrow{PQ} \)[/tex] and [tex]\( \overrightarrow{PR} \)[/tex]:
[tex]\[ P = (0, 1, 1), \quad Q = (2, 0, -4), \quad R = (-3, -2, 1) \][/tex]
[tex]\[ \overrightarrow{PQ} = Q - P \implies (2 - 0, 0 - 1, -4 - 1) = (2, -1, -5) \][/tex]
[tex]\[ \overrightarrow{PR} = R - P \implies (-3 - 0, -2 - 1, 1 - 1) = (-3, -3, 0) \][/tex]
2. Calculate the cross product [tex]\( \overrightarrow{PQ} \times \overrightarrow{PR} \)[/tex]:
The cross product can be found using the determinant of a matrix composed of the unit vectors and the components of [tex]\( \overrightarrow{PQ} \)[/tex] and [tex]\( \overrightarrow{PR} \)[/tex]:
[tex]\[ \overrightarrow{PQ} \times \overrightarrow{PR} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -1 & -5 \\ -3 & -3 & 0 \end{vmatrix} \][/tex]
Expanding this determinant, we get:
[tex]\[ \overrightarrow{PQ} \times \overrightarrow{PR} = \mathbf{i}((-1)(0) - (-5)(-3)) - \mathbf{j}((2)(0) - (-5)(-3)) + \mathbf{k}((2)(-3) - (-1)(-3)) \][/tex]
[tex]\[ = \mathbf{i}(0 - 15) - \mathbf{j}(0 - 15) + \mathbf{k}(-6 - 3) \][/tex]
[tex]\[ = \mathbf{i}(-15) - \mathbf{j}(-15) + \mathbf{k}(-9) \][/tex]
[tex]\[ = -15\mathbf{i} + 15\mathbf{j} - 9\mathbf{k} \][/tex]
Thus, the cross product is:
[tex]\[ \overrightarrow{PQ} \times \overrightarrow{PR} = (-15, 15, -9) \][/tex]
3. Find the magnitude of the cross product [tex]\( \lVert \overrightarrow{PQ} \times \overrightarrow{PR} \rVert \)[/tex]:
The magnitude of a vector [tex]\((a, b, c)\)[/tex] is given by:
[tex]\[ \lVert (a, b, c) \rVert = \sqrt{a^2 + b^2 + c^2} \][/tex]
Applying this to our cross product vector:
[tex]\[ \lVert (-15, 15, -9) \rVert = \sqrt{(-15)^2 + 15^2 + (-9)^2} \][/tex]
[tex]\[ = \sqrt{225 + 225 + 81} \][/tex]
[tex]\[ = \sqrt{531} \][/tex]
4. Understand that the area of the parallelogram is given by the magnitude of the cross product:
Thus, the area of the parallelogram is:
[tex]\[ \sqrt{531} \][/tex]
After simplification, this becomes:
[tex]\[ \text{The area of the parallelogram is } 3\sqrt{59}. \][/tex]
1. Find the vectors [tex]\( \overrightarrow{PQ} \)[/tex] and [tex]\( \overrightarrow{PR} \)[/tex]:
[tex]\[ P = (0, 1, 1), \quad Q = (2, 0, -4), \quad R = (-3, -2, 1) \][/tex]
[tex]\[ \overrightarrow{PQ} = Q - P \implies (2 - 0, 0 - 1, -4 - 1) = (2, -1, -5) \][/tex]
[tex]\[ \overrightarrow{PR} = R - P \implies (-3 - 0, -2 - 1, 1 - 1) = (-3, -3, 0) \][/tex]
2. Calculate the cross product [tex]\( \overrightarrow{PQ} \times \overrightarrow{PR} \)[/tex]:
The cross product can be found using the determinant of a matrix composed of the unit vectors and the components of [tex]\( \overrightarrow{PQ} \)[/tex] and [tex]\( \overrightarrow{PR} \)[/tex]:
[tex]\[ \overrightarrow{PQ} \times \overrightarrow{PR} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -1 & -5 \\ -3 & -3 & 0 \end{vmatrix} \][/tex]
Expanding this determinant, we get:
[tex]\[ \overrightarrow{PQ} \times \overrightarrow{PR} = \mathbf{i}((-1)(0) - (-5)(-3)) - \mathbf{j}((2)(0) - (-5)(-3)) + \mathbf{k}((2)(-3) - (-1)(-3)) \][/tex]
[tex]\[ = \mathbf{i}(0 - 15) - \mathbf{j}(0 - 15) + \mathbf{k}(-6 - 3) \][/tex]
[tex]\[ = \mathbf{i}(-15) - \mathbf{j}(-15) + \mathbf{k}(-9) \][/tex]
[tex]\[ = -15\mathbf{i} + 15\mathbf{j} - 9\mathbf{k} \][/tex]
Thus, the cross product is:
[tex]\[ \overrightarrow{PQ} \times \overrightarrow{PR} = (-15, 15, -9) \][/tex]
3. Find the magnitude of the cross product [tex]\( \lVert \overrightarrow{PQ} \times \overrightarrow{PR} \rVert \)[/tex]:
The magnitude of a vector [tex]\((a, b, c)\)[/tex] is given by:
[tex]\[ \lVert (a, b, c) \rVert = \sqrt{a^2 + b^2 + c^2} \][/tex]
Applying this to our cross product vector:
[tex]\[ \lVert (-15, 15, -9) \rVert = \sqrt{(-15)^2 + 15^2 + (-9)^2} \][/tex]
[tex]\[ = \sqrt{225 + 225 + 81} \][/tex]
[tex]\[ = \sqrt{531} \][/tex]
4. Understand that the area of the parallelogram is given by the magnitude of the cross product:
Thus, the area of the parallelogram is:
[tex]\[ \sqrt{531} \][/tex]
After simplification, this becomes:
[tex]\[ \text{The area of the parallelogram is } 3\sqrt{59}. \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.