Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Rewrite the equation in standard form.

[tex]\[
\begin{array}{r}
x^2 + y^2 + 8x - 16y + 4 = 0 \\
(x + [?])^2 + (y - \square)^2 =
\end{array}
\][/tex]


Sagot :

Sure, let's put the equation [tex]\( x^2 + y^2 + 8x - 16y + 4 = 0 \)[/tex] into standard form. Follow these steps:

1. Complete the square for the [tex]\(x\)[/tex]-terms:
- Start with [tex]\( x^2 + 8x \)[/tex].
- To complete the square, take half of the coefficient of [tex]\(x\)[/tex] (which is 8), and square it. [tex]\[\left( \frac{8}{2} \right)^2 = 16.\][/tex]
- Add and subtract this value within the equation:
[tex]\[ x^2 + 8x = (x + 4)^2 - 16. \][/tex]

2. Complete the square for the [tex]\(y\)[/tex]-terms:
- Start with [tex]\( y^2 - 16y \)[/tex].
- To complete the square, take half of the coefficient of [tex]\(y\)[/tex] (which is -16), and square it. [tex]\[\left( \frac{-16}{2} \right)^2 = 64.\][/tex]
- Add and subtract this value within the equation:
[tex]\[ y^2 - 16y = (y - 8)^2 - 64. \][/tex]

3. Rewrite the entire equation with these completed squares:
[tex]\[ x^2 + 8x + y^2 - 16y + 4 = \left( (x + 4)^2 - 16 \right) + \left( (y - 8)^2 - 64 \right) + 4 = 0. \][/tex]

4. Simplify the equation:
[tex]\[ (x + 4)^2 - 16 + (y - 8)^2 - 64 + 4 = 0. \][/tex]
[tex]\[ (x + 4)^2 + (y - 8)^2 - 76 = 0. \][/tex]

5. Move the constant term to the other side of the equation:
[tex]\[ (x + 4)^2 + (y - 8)^2 = 76. \][/tex]

Thus, the standard form of the given equation is:
[tex]\[ (x + 4)^2 + (y - 8)^2 = 76. \][/tex]

In this form:
[tex]\[ (x + [?])^2 = (x + 4)^2 \rightarrow \text{?} = 4, \][/tex]
[tex]\[ (y - \square)^2 = (y - 8)^2 \rightarrow \square = 8. \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.