Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To find the coordinates of the transformed rectangle, we need to perform a linear transformation on the given matrix [tex]\( R \)[/tex] using the transformation matrix provided. Below is a detailed, step-by-step solution to determine the transformed coordinates.
Step 1: Identify the matrix [tex]\( R \)[/tex] which contains the vertices of the rectangle.
The given matrix [tex]\( R \)[/tex] is:
[tex]\[ R = \begin{bmatrix} 0 & 0 & 3 & 3 \\ 0 & 3 & 3 & 0 \end{bmatrix} \][/tex]
Step 2: Identify the transformation matrix [tex]\( T \)[/tex].
The transformation matrix [tex]\( T \)[/tex] given is:
[tex]\[ T = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \][/tex]
Step 3: Perform the matrix multiplication of [tex]\( T \)[/tex] with [tex]\( R \)[/tex].
The multiplication [tex]\( T \times R \)[/tex] is performed as follows:
[tex]\[ T \times R = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 3 & 3 \\ 0 & 3 & 3 & 0 \end{bmatrix} \][/tex]
To compute each element of the resulting matrix, we take the dot product of the rows of [tex]\( T \)[/tex] with the columns of [tex]\( R \)[/tex].
- First column:
[tex]\[ \begin{bmatrix} -1 & 0 \end{bmatrix} \times \begin{bmatrix} 0 \\ 0 \end{bmatrix} = (-1 \times 0) + (0 \times 0) = 0 \][/tex]
[tex]\[ \begin{bmatrix} 0 & 1 \end{bmatrix} \times \begin{bmatrix} 0 \\ 0 \end{bmatrix} = (0 \times 0) + (1 \times 0) = 0 \][/tex]
- Second column:
[tex]\[ \begin{bmatrix} -1 & 0 \end{bmatrix} \times \begin{bmatrix} 0 \\ 3 \end{bmatrix} = (-1 \times 0) + (0 \times 3) = 0 \][/tex]
[tex]\[ \begin{bmatrix} 0 & 1 \end{bmatrix} \times \begin{bmatrix} 0 \\ 3 \end{bmatrix} = (0 \times 0) + (1 \times 3) = 3 \][/tex]
- Third column:
[tex]\[ \begin{bmatrix} -1 & 0 \end{bmatrix} \times \begin{bmatrix} 3 \\ 3 \end{bmatrix} = (-1 \times 3) + (0 \times 3) = -3 \][/tex]
[tex]\[ \begin{bmatrix} 0 & 1 \end{bmatrix} \times \begin{bmatrix} 3 \\ 3 \end{bmatrix} = (0 \times 3) + (1 \times 3) = 3 \][/tex]
- Fourth column:
[tex]\[ \begin{bmatrix} -1 & 0 \end{bmatrix} \times \begin{bmatrix} 3 \\ 0 \end{bmatrix} = (-1 \times 3) + (0 \times 0) = -3 \][/tex]
[tex]\[ \begin{bmatrix} 0 & 1 \end{bmatrix} \times \begin{bmatrix} 3 \\ 0 \end{bmatrix} = (0 \times 3) + (1 \times 0) = 0 \][/tex]
Thus, the resulting transformed matrix is:
[tex]\[ T \times R = \begin{bmatrix} 0 & 0 & -3 & -3 \\ 0 & 3 & 3 & 0 \end{bmatrix} \][/tex]
Step 4: Extract the coordinates of the transformed rectangle.
By reading the columns of the transformed matrix, the coordinates of the transformed rectangle are:
[tex]\[ (0, 0), (0, 3), (-3, 3), (-3, 0) \][/tex]
Step 5: Match the result with the provided options.
The coordinates we found match with the option:
[tex]\[ (0,0), (0,3), (-3,3), (-3,0) \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{(0,0),(0,3),(-3,3),(-3,0)} \][/tex]
Step 1: Identify the matrix [tex]\( R \)[/tex] which contains the vertices of the rectangle.
The given matrix [tex]\( R \)[/tex] is:
[tex]\[ R = \begin{bmatrix} 0 & 0 & 3 & 3 \\ 0 & 3 & 3 & 0 \end{bmatrix} \][/tex]
Step 2: Identify the transformation matrix [tex]\( T \)[/tex].
The transformation matrix [tex]\( T \)[/tex] given is:
[tex]\[ T = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \][/tex]
Step 3: Perform the matrix multiplication of [tex]\( T \)[/tex] with [tex]\( R \)[/tex].
The multiplication [tex]\( T \times R \)[/tex] is performed as follows:
[tex]\[ T \times R = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 3 & 3 \\ 0 & 3 & 3 & 0 \end{bmatrix} \][/tex]
To compute each element of the resulting matrix, we take the dot product of the rows of [tex]\( T \)[/tex] with the columns of [tex]\( R \)[/tex].
- First column:
[tex]\[ \begin{bmatrix} -1 & 0 \end{bmatrix} \times \begin{bmatrix} 0 \\ 0 \end{bmatrix} = (-1 \times 0) + (0 \times 0) = 0 \][/tex]
[tex]\[ \begin{bmatrix} 0 & 1 \end{bmatrix} \times \begin{bmatrix} 0 \\ 0 \end{bmatrix} = (0 \times 0) + (1 \times 0) = 0 \][/tex]
- Second column:
[tex]\[ \begin{bmatrix} -1 & 0 \end{bmatrix} \times \begin{bmatrix} 0 \\ 3 \end{bmatrix} = (-1 \times 0) + (0 \times 3) = 0 \][/tex]
[tex]\[ \begin{bmatrix} 0 & 1 \end{bmatrix} \times \begin{bmatrix} 0 \\ 3 \end{bmatrix} = (0 \times 0) + (1 \times 3) = 3 \][/tex]
- Third column:
[tex]\[ \begin{bmatrix} -1 & 0 \end{bmatrix} \times \begin{bmatrix} 3 \\ 3 \end{bmatrix} = (-1 \times 3) + (0 \times 3) = -3 \][/tex]
[tex]\[ \begin{bmatrix} 0 & 1 \end{bmatrix} \times \begin{bmatrix} 3 \\ 3 \end{bmatrix} = (0 \times 3) + (1 \times 3) = 3 \][/tex]
- Fourth column:
[tex]\[ \begin{bmatrix} -1 & 0 \end{bmatrix} \times \begin{bmatrix} 3 \\ 0 \end{bmatrix} = (-1 \times 3) + (0 \times 0) = -3 \][/tex]
[tex]\[ \begin{bmatrix} 0 & 1 \end{bmatrix} \times \begin{bmatrix} 3 \\ 0 \end{bmatrix} = (0 \times 3) + (1 \times 0) = 0 \][/tex]
Thus, the resulting transformed matrix is:
[tex]\[ T \times R = \begin{bmatrix} 0 & 0 & -3 & -3 \\ 0 & 3 & 3 & 0 \end{bmatrix} \][/tex]
Step 4: Extract the coordinates of the transformed rectangle.
By reading the columns of the transformed matrix, the coordinates of the transformed rectangle are:
[tex]\[ (0, 0), (0, 3), (-3, 3), (-3, 0) \][/tex]
Step 5: Match the result with the provided options.
The coordinates we found match with the option:
[tex]\[ (0,0), (0,3), (-3,3), (-3,0) \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{(0,0),(0,3),(-3,3),(-3,0)} \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.