At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Certainly! Let's solve this step-by-step.
Step 1: Understand the properties of a [tex]\(45^{\circ}-45^{\circ}-90^{\circ}\)[/tex] triangle.
- This is a special type of isosceles right triangle where the two legs are of equal length.
- The ratio of the lengths of the legs to the hypotenuse in a [tex]\(45^{\circ}-45^{\circ}-90^{\circ}\)[/tex] triangle is [tex]\(1:1:\sqrt{2}\)[/tex].
Step 2: Given data.
- The hypotenuse measures [tex]\(24\)[/tex] inches.
Step 3: Use the ratio properties to determine the length of one leg.
- Since we know the hypotenuse is [tex]\(24\)[/tex] inches and the ratio of the legs to the hypotenuse is [tex]\(1:\sqrt{2}\)[/tex], we know that each leg of the triangle is [tex]\(\frac{\text{hypotenuse}}{\sqrt{2}}\)[/tex].
Step 4: Calculate the length of one leg.
- Therefore, the length of one leg is [tex]\(\frac{24}{\sqrt{2}}\)[/tex].
Step 5: Simplify the result.
- Simplifying [tex]\(\frac{24}{\sqrt{2}}\)[/tex] gives us approximately [tex]\(16.97056274847714\)[/tex] inches.
So, the length of one of the legs of the [tex]\(45^{\circ}-45^{\circ}-90^{\circ}\)[/tex] triangle is [tex]\(16.97056274847714\)[/tex] inches. The nearest correct option is not provided in the choices listed, but this is the accurate result.
Step 1: Understand the properties of a [tex]\(45^{\circ}-45^{\circ}-90^{\circ}\)[/tex] triangle.
- This is a special type of isosceles right triangle where the two legs are of equal length.
- The ratio of the lengths of the legs to the hypotenuse in a [tex]\(45^{\circ}-45^{\circ}-90^{\circ}\)[/tex] triangle is [tex]\(1:1:\sqrt{2}\)[/tex].
Step 2: Given data.
- The hypotenuse measures [tex]\(24\)[/tex] inches.
Step 3: Use the ratio properties to determine the length of one leg.
- Since we know the hypotenuse is [tex]\(24\)[/tex] inches and the ratio of the legs to the hypotenuse is [tex]\(1:\sqrt{2}\)[/tex], we know that each leg of the triangle is [tex]\(\frac{\text{hypotenuse}}{\sqrt{2}}\)[/tex].
Step 4: Calculate the length of one leg.
- Therefore, the length of one leg is [tex]\(\frac{24}{\sqrt{2}}\)[/tex].
Step 5: Simplify the result.
- Simplifying [tex]\(\frac{24}{\sqrt{2}}\)[/tex] gives us approximately [tex]\(16.97056274847714\)[/tex] inches.
So, the length of one of the legs of the [tex]\(45^{\circ}-45^{\circ}-90^{\circ}\)[/tex] triangle is [tex]\(16.97056274847714\)[/tex] inches. The nearest correct option is not provided in the choices listed, but this is the accurate result.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.