Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
### Given Data:
- Parametric equations for the particle:
[tex]\[ x = 4 \alpha \cos^3(\mu), \quad y = 4 \alpha \sin^3(\mu), \quad z = 3 \phi \cos(2 \mu) \][/tex]
### Part (a): Finding the Velocity and Acceleration
1. Velocity Components
- The velocity vector [tex]\(\mathbf{v}\)[/tex] is obtained by differentiating the position vector with respect to time [tex]\(t\)[/tex]:
[tex]\[ v_x = \frac{dx}{dt} = \frac{d}{dt}[4 \alpha \cos^3(\mu)] \][/tex]
[tex]\[ v_x = 4 \alpha \cdot 3 \cos^2(\mu) \cdot (-\sin(\mu)) \cdot \frac{d\mu}{dt} \][/tex]
[tex]\[ v_x = -12 \alpha \cos^2(\mu) \sin(\mu) \cdot \frac{d\mu}{dt} \][/tex]
[tex]\[ v_y = \frac{dy}{dt} = \frac{d}{dt}[4 \alpha \sin^3(\mu)] \][/tex]
[tex]\[ v_y = 4 \alpha \cdot 3 \sin^2(\mu) \cdot \cos(\mu) \cdot \frac{d\mu}{dt} \][/tex]
[tex]\[ v_y = 12 \alpha \sin^2(\mu) \cos(\mu) \cdot \frac{d\mu}{dt} \][/tex]
[tex]\[ v_z = \frac{dz}{dt} = \frac{d}{dt}[3 \phi \cos(2 \mu)] \][/tex]
[tex]\[ v_z = 3 \phi \cdot (-2 \sin(2 \mu)) \cdot \frac{d\mu}{dt} \][/tex]
[tex]\[ v_z = -6 \phi \sin(2 \mu) \cdot \frac{d\mu}{dt} \][/tex]
Simplifying the expressions, the velocity components become:
[tex]\[ v_x = -12 \alpha \cos^2(\mu) \sin(\mu) \][/tex]
[tex]\[ v_y = 12 \alpha \sin^2(\mu) \cos(\mu) \][/tex]
[tex]\[ v_z = -6 \phi \sin(2 \mu) \][/tex]
2. Acceleration Components
- The acceleration vector [tex]\(\mathbf{a}\)[/tex] is the time derivative of the velocity vector:
[tex]\[ a_x = \frac{dv_x}{dt} = \frac{d}{dt}[-12 \alpha \cos^2(\mu) \sin(\mu)] \][/tex]
Expanding using the product rule:
[tex]\[ a_x = -12 \alpha \left[\cos^2(\mu) \cdot \frac{d}{dt}[\sin(\mu)] + \sin(\mu) \cdot \frac{d}{dt}[\cos^2(\mu)]\right] \][/tex]
Simplifying:
[tex]\[ a_x = -12 \alpha \left[ \cos^2(\mu) (\cos(\mu) \cdot \frac{d\mu}{dt}) + \sin(\mu) \cdot 2 \cos(\mu) \cdot (-\sin(\mu)) \cdot \frac{d\mu}{dt} \right] \][/tex]
[tex]\[ a_x = -12 \alpha \cos(\mu) \cdot \frac{d\mu}{dt} \left[ \cos^2(\mu) - 2 \sin^2(\mu) \right] \][/tex]
Removing the dependency on [tex]\( \frac{d\mu}{dt} \)[/tex]:
[tex]\[ a_x = -12 \alpha [\cos^2(\mu) - 2 \sin^2(\mu)] \cos(\mu) \][/tex]
[tex]\[ a_y = \frac{dv_y}{dt} = \frac{d}{dt}[12 \alpha \sin^2(\mu) \cos(\mu)] \][/tex]
Expanding using the product rule:
[tex]\[ a_y = 12 \alpha \left[\sin^2(\mu) \cdot \frac{d}{dt}[\cos(\mu)] + \cos(\mu) \cdot \frac{d}{dt}[\sin^2(\mu)]\right] \][/tex]
Simplifying:
[tex]\[ a_y = 12 \alpha \left[ \sin^2(\mu) (-\sin(\mu) \cdot \frac{d\mu}{dt}) + \cos(\mu) \cdot 2 \sin(\mu) \cos(\mu) \cdot \frac{d\mu}{dt} \right] \][/tex]
[tex]\[ a_y = 12 \alpha \sin(\mu) \cdot \frac{d\mu}{dt} \left[ 2 \cos^2(\mu) - \sin^2(\mu) \right] \][/tex]
[tex]\[ a_y = 12 \alpha [2 \cos^2(\mu) - \sin^2(\mu)] \sin(\mu) \][/tex]
[tex]\[ a_z = \frac{dv_z}{dt} = \frac{d}{dt}[-6 \phi \sin(2 \mu)] \][/tex]
[tex]\[ a_z = -6 \phi \cdot 2 \cos(2 \mu) \cdot \frac{d\mu}{dt} \][/tex]
Simplifying:
[tex]\[ a_z = -12 \phi \cos(2 \mu) \][/tex]
### Part (b): Evaluating the Dot Product [tex]\( \mathbf{r} \cdot \mathbf{v} \)[/tex]
The dot product is given by:
[tex]\[ \mathbf{r} \cdot \mathbf{v} = x v_x + y v_y + z v_z \][/tex]
Substitute the given expressions:
[tex]\[ x = 4 \alpha \cos^3(\mu), \quad y = 4 \alpha \sin^3(\mu), \quad z = 3 \phi \cos(2 \mu) \][/tex]
[tex]\[ v_x = -12 \alpha \cos^2(\mu) \sin(\mu), \quad v_y = 12 \alpha \sin^2(\mu) \cos(\mu), \quad v_z = -6 \phi \sin(2 \mu) \][/tex]
Calculate the individual products:
[tex]\[ x v_x = (4 \alpha \cos^3(\mu)) (-12 \alpha \cos^2(\mu) \sin(\mu)) \][/tex]
[tex]\[ x v_x = -48 \alpha^2 \cos^5(\mu) \sin(\mu) \][/tex]
[tex]\[ y v_y = (4 \alpha \sin^3(\mu)) (12 \alpha \sin^2(\mu) \cos(\mu)) \][/tex]
[tex]\[ y v_y = 48 \alpha^2 \sin^5(\mu) \cos(\mu) \][/tex]
[tex]\[ z v_z = (3 \phi \cos(2 \mu)) (-6 \phi \sin(2 \mu)) \][/tex]
[tex]\[ z v_z = -18 \phi^2 \cos(2 \mu) \sin(2 \mu) \][/tex]
Using trigonometric identities:
[tex]\[ \cos(2 \mu) \sin(2 \mu) = \frac{1}{2} \sin(4 \mu) \][/tex]
[tex]\[ z v_z = -18 \phi^2 \cdot \frac{1}{2} \sin(4 \mu) \][/tex]
[tex]\[ z v_z = -9 \phi^2 \sin(4 \mu) \][/tex]
Thus, the dot product [tex]\( \mathbf{r} \cdot \mathbf{v} \)[/tex] becomes:enzen
[tex]\[ \mathbf{r} \cdot \mathbf{v} = -48 \alpha^2 \cos^5(\mu) \sin(\mu) + 48 \alpha^2 \sin^5(\mu) \cos(\mu) - 9 \phi^2 \sin(4 \mu) \][/tex]
Therefore, the velocity, acceleration, and the dot product vector for the particle are as derived above.
- Parametric equations for the particle:
[tex]\[ x = 4 \alpha \cos^3(\mu), \quad y = 4 \alpha \sin^3(\mu), \quad z = 3 \phi \cos(2 \mu) \][/tex]
### Part (a): Finding the Velocity and Acceleration
1. Velocity Components
- The velocity vector [tex]\(\mathbf{v}\)[/tex] is obtained by differentiating the position vector with respect to time [tex]\(t\)[/tex]:
[tex]\[ v_x = \frac{dx}{dt} = \frac{d}{dt}[4 \alpha \cos^3(\mu)] \][/tex]
[tex]\[ v_x = 4 \alpha \cdot 3 \cos^2(\mu) \cdot (-\sin(\mu)) \cdot \frac{d\mu}{dt} \][/tex]
[tex]\[ v_x = -12 \alpha \cos^2(\mu) \sin(\mu) \cdot \frac{d\mu}{dt} \][/tex]
[tex]\[ v_y = \frac{dy}{dt} = \frac{d}{dt}[4 \alpha \sin^3(\mu)] \][/tex]
[tex]\[ v_y = 4 \alpha \cdot 3 \sin^2(\mu) \cdot \cos(\mu) \cdot \frac{d\mu}{dt} \][/tex]
[tex]\[ v_y = 12 \alpha \sin^2(\mu) \cos(\mu) \cdot \frac{d\mu}{dt} \][/tex]
[tex]\[ v_z = \frac{dz}{dt} = \frac{d}{dt}[3 \phi \cos(2 \mu)] \][/tex]
[tex]\[ v_z = 3 \phi \cdot (-2 \sin(2 \mu)) \cdot \frac{d\mu}{dt} \][/tex]
[tex]\[ v_z = -6 \phi \sin(2 \mu) \cdot \frac{d\mu}{dt} \][/tex]
Simplifying the expressions, the velocity components become:
[tex]\[ v_x = -12 \alpha \cos^2(\mu) \sin(\mu) \][/tex]
[tex]\[ v_y = 12 \alpha \sin^2(\mu) \cos(\mu) \][/tex]
[tex]\[ v_z = -6 \phi \sin(2 \mu) \][/tex]
2. Acceleration Components
- The acceleration vector [tex]\(\mathbf{a}\)[/tex] is the time derivative of the velocity vector:
[tex]\[ a_x = \frac{dv_x}{dt} = \frac{d}{dt}[-12 \alpha \cos^2(\mu) \sin(\mu)] \][/tex]
Expanding using the product rule:
[tex]\[ a_x = -12 \alpha \left[\cos^2(\mu) \cdot \frac{d}{dt}[\sin(\mu)] + \sin(\mu) \cdot \frac{d}{dt}[\cos^2(\mu)]\right] \][/tex]
Simplifying:
[tex]\[ a_x = -12 \alpha \left[ \cos^2(\mu) (\cos(\mu) \cdot \frac{d\mu}{dt}) + \sin(\mu) \cdot 2 \cos(\mu) \cdot (-\sin(\mu)) \cdot \frac{d\mu}{dt} \right] \][/tex]
[tex]\[ a_x = -12 \alpha \cos(\mu) \cdot \frac{d\mu}{dt} \left[ \cos^2(\mu) - 2 \sin^2(\mu) \right] \][/tex]
Removing the dependency on [tex]\( \frac{d\mu}{dt} \)[/tex]:
[tex]\[ a_x = -12 \alpha [\cos^2(\mu) - 2 \sin^2(\mu)] \cos(\mu) \][/tex]
[tex]\[ a_y = \frac{dv_y}{dt} = \frac{d}{dt}[12 \alpha \sin^2(\mu) \cos(\mu)] \][/tex]
Expanding using the product rule:
[tex]\[ a_y = 12 \alpha \left[\sin^2(\mu) \cdot \frac{d}{dt}[\cos(\mu)] + \cos(\mu) \cdot \frac{d}{dt}[\sin^2(\mu)]\right] \][/tex]
Simplifying:
[tex]\[ a_y = 12 \alpha \left[ \sin^2(\mu) (-\sin(\mu) \cdot \frac{d\mu}{dt}) + \cos(\mu) \cdot 2 \sin(\mu) \cos(\mu) \cdot \frac{d\mu}{dt} \right] \][/tex]
[tex]\[ a_y = 12 \alpha \sin(\mu) \cdot \frac{d\mu}{dt} \left[ 2 \cos^2(\mu) - \sin^2(\mu) \right] \][/tex]
[tex]\[ a_y = 12 \alpha [2 \cos^2(\mu) - \sin^2(\mu)] \sin(\mu) \][/tex]
[tex]\[ a_z = \frac{dv_z}{dt} = \frac{d}{dt}[-6 \phi \sin(2 \mu)] \][/tex]
[tex]\[ a_z = -6 \phi \cdot 2 \cos(2 \mu) \cdot \frac{d\mu}{dt} \][/tex]
Simplifying:
[tex]\[ a_z = -12 \phi \cos(2 \mu) \][/tex]
### Part (b): Evaluating the Dot Product [tex]\( \mathbf{r} \cdot \mathbf{v} \)[/tex]
The dot product is given by:
[tex]\[ \mathbf{r} \cdot \mathbf{v} = x v_x + y v_y + z v_z \][/tex]
Substitute the given expressions:
[tex]\[ x = 4 \alpha \cos^3(\mu), \quad y = 4 \alpha \sin^3(\mu), \quad z = 3 \phi \cos(2 \mu) \][/tex]
[tex]\[ v_x = -12 \alpha \cos^2(\mu) \sin(\mu), \quad v_y = 12 \alpha \sin^2(\mu) \cos(\mu), \quad v_z = -6 \phi \sin(2 \mu) \][/tex]
Calculate the individual products:
[tex]\[ x v_x = (4 \alpha \cos^3(\mu)) (-12 \alpha \cos^2(\mu) \sin(\mu)) \][/tex]
[tex]\[ x v_x = -48 \alpha^2 \cos^5(\mu) \sin(\mu) \][/tex]
[tex]\[ y v_y = (4 \alpha \sin^3(\mu)) (12 \alpha \sin^2(\mu) \cos(\mu)) \][/tex]
[tex]\[ y v_y = 48 \alpha^2 \sin^5(\mu) \cos(\mu) \][/tex]
[tex]\[ z v_z = (3 \phi \cos(2 \mu)) (-6 \phi \sin(2 \mu)) \][/tex]
[tex]\[ z v_z = -18 \phi^2 \cos(2 \mu) \sin(2 \mu) \][/tex]
Using trigonometric identities:
[tex]\[ \cos(2 \mu) \sin(2 \mu) = \frac{1}{2} \sin(4 \mu) \][/tex]
[tex]\[ z v_z = -18 \phi^2 \cdot \frac{1}{2} \sin(4 \mu) \][/tex]
[tex]\[ z v_z = -9 \phi^2 \sin(4 \mu) \][/tex]
Thus, the dot product [tex]\( \mathbf{r} \cdot \mathbf{v} \)[/tex] becomes:enzen
[tex]\[ \mathbf{r} \cdot \mathbf{v} = -48 \alpha^2 \cos^5(\mu) \sin(\mu) + 48 \alpha^2 \sin^5(\mu) \cos(\mu) - 9 \phi^2 \sin(4 \mu) \][/tex]
Therefore, the velocity, acceleration, and the dot product vector for the particle are as derived above.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.