Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the new vertices of side [tex]\( A'C' \)[/tex] after dilating the triangle with vertices [tex]\( A=(-3, -2) \)[/tex], [tex]\( B=(-1, 3) \)[/tex], and [tex]\( C=(2, 1) \)[/tex] by a scale factor of 4, we need to follow these steps:
1. Identify the original coordinates of the vertices:
- [tex]\( A = (-3, -2) \)[/tex]
- [tex]\( B = (-1, 3) \)[/tex]
- [tex]\( C = (2, 1) \)[/tex]
2. Apply the scale factor to each coordinate:
The formula for dilation by a scale factor [tex]\( k \)[/tex] involves multiplying each coordinate by [tex]\( k \)[/tex]. Here, our scale factor is [tex]\( 4 \)[/tex].
3. Calculate the new coordinates for vertex [tex]\( A' \)[/tex]:
[tex]\[ A' = (4 \times -3, 4 \times -2) = (-12, -8) \][/tex]
4. Calculate the new coordinates for vertex [tex]\( B' \)[/tex]:
As [tex]\( B \)[/tex] is not part of side [tex]\( A'C' \)[/tex], in this question context, we focus on calculating the coordinates of [tex]\( A' \)[/tex] and [tex]\( C' \)[/tex]. However, for completeness:
[tex]\[ B' = (4 \times -1, 4 \times 3) = (-4, 12) \][/tex]
5. Calculate the new coordinates for vertex [tex]\( C' \)[/tex]:
[tex]\[ C' = (4 \times 2, 4 \times 1) = (8, 4) \][/tex]
6. Determine the location of side [tex]\( A'C' \)[/tex]:
After dilating the triangle, the new coordinates for the vertices of side [tex]\( A'C' \)[/tex] are:
[tex]\[ A' = (-12, -8) \][/tex]
[tex]\[ C' = (8, 4) \][/tex]
Thus, the new vertices of side [tex]\( A'C' \)[/tex] are [tex]\( A' = (-12, -8) \)[/tex] and [tex]\( C' = (8, 4) \)[/tex].
1. Identify the original coordinates of the vertices:
- [tex]\( A = (-3, -2) \)[/tex]
- [tex]\( B = (-1, 3) \)[/tex]
- [tex]\( C = (2, 1) \)[/tex]
2. Apply the scale factor to each coordinate:
The formula for dilation by a scale factor [tex]\( k \)[/tex] involves multiplying each coordinate by [tex]\( k \)[/tex]. Here, our scale factor is [tex]\( 4 \)[/tex].
3. Calculate the new coordinates for vertex [tex]\( A' \)[/tex]:
[tex]\[ A' = (4 \times -3, 4 \times -2) = (-12, -8) \][/tex]
4. Calculate the new coordinates for vertex [tex]\( B' \)[/tex]:
As [tex]\( B \)[/tex] is not part of side [tex]\( A'C' \)[/tex], in this question context, we focus on calculating the coordinates of [tex]\( A' \)[/tex] and [tex]\( C' \)[/tex]. However, for completeness:
[tex]\[ B' = (4 \times -1, 4 \times 3) = (-4, 12) \][/tex]
5. Calculate the new coordinates for vertex [tex]\( C' \)[/tex]:
[tex]\[ C' = (4 \times 2, 4 \times 1) = (8, 4) \][/tex]
6. Determine the location of side [tex]\( A'C' \)[/tex]:
After dilating the triangle, the new coordinates for the vertices of side [tex]\( A'C' \)[/tex] are:
[tex]\[ A' = (-12, -8) \][/tex]
[tex]\[ C' = (8, 4) \][/tex]
Thus, the new vertices of side [tex]\( A'C' \)[/tex] are [tex]\( A' = (-12, -8) \)[/tex] and [tex]\( C' = (8, 4) \)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.